8,177 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Segmentation and Fracture Detection in CT Images for Traumatic Pelvic Injuries

    Get PDF
    In recent decades, more types and quantities of medical data have been collected due to advanced technology. A large number of significant and critical information is contained in these medical data. High efficient and automated computational methods are urgently needed to process and analyze all available medical data in order to provide the physicians with recommendations and predictions on diagnostic decisions and treatment planning. Traumatic pelvic injury is a severe yet common injury in the United States, often caused by motor vehicle accidents or fall. Information contained in the pelvic Computed Tomography (CT) images is very important for assessing the severity and prognosis of traumatic pelvic injuries. Each pelvic CT scan includes a large number of slices. Meanwhile, each slice contains a large quantity of data that may not be thoroughly and accurately analyzed via simple visual inspection with the desired accuracy and speed. Hence, a computer-assisted pelvic trauma decision-making system is needed to assist physicians in making accurate diagnostic decisions and determining treatment planning in a short period of time. Pelvic bone segmentation is a vital step in analyzing pelvic CT images and assisting physicians with diagnostic decisions in traumatic pelvic injuries. In this study, a new hierarchical segmentation algorithm is proposed to automatically extract multiplelevel bone structures using a combination of anatomical knowledge and computational techniques. First, morphological operations, image enhancement, and edge detection are performed for preliminary bone segmentation. The proposed algorithm then uses a template-based best shape matching method that provides an entirely automated segmentation process. This is followed by the proposed Registered Active Shape Model (RASM) algorithm that extracts pelvic bone tissues using more robust training models than the Standard ASM algorithm. In addition, a novel hierarchical initialization process for RASM is proposed in order to address the shortcoming of the Standard ASM, i.e. high sensitivity to initialization. Two suitable measures are defined to evaluate the segmentation results: Mean Distance and Mis-segmented Area to quantify the segmentation accuracy. Successful segmentation results indicate effectiveness and robustness of the proposed algorithm. Comparison of segmentation performance is also conducted using both the proposed method and the Snake method. A cross-validation process is designed to demonstrate the effectiveness of the training models. 3D pelvic bone models are built after pelvic bone structures are segmented from consecutive 2D CT slices. Automatic and accurate detection of the fractures from segmented bones in traumatic pelvic injuries can help physicians detect the severity of injuries in patients. The extraction of fracture features (such as presence and location of fractures) as well as fracture displacement measurement, are vital for assisting physicians in making faster and more accurate decisions. In this project, after bone segmentation, fracture detection is performed using a hierarchical algorithm based on wavelet transformation, adaptive windowing, boundary tracing and masking. Also, a quantitative measure of fracture severity based on pelvic CT scans is defined and explored. The results are promising, demonstrating that the proposed method not only capable of automatically detecting both major and minor fractures, but also has potentials to be used for clinical applications

    A Multicamera System for Gesture Tracking With Three Dimensional Hand Pose Estimation

    Get PDF
    The goal of any visual tracking system is to successfully detect then follow an object of interest through a sequence of images. The difficulty of tracking an object depends on the dynamics, the motion and the characteristics of the object as well as on the environ ment. For example, tracking an articulated, self-occluding object such as a signing hand has proven to be a very difficult problem. The focus of this work is on tracking and pose estimation with applications to hand gesture interpretation. An approach that attempts to integrate the simplicity of a region tracker with single hand 3D pose estimation methods is presented. Additionally, this work delves into the pose estimation problem. This is ac complished by both analyzing hand templates composed of their morphological skeleton, and addressing the skeleton\u27s inherent instability. Ligature points along the skeleton are flagged in order to determine their effect on skeletal instabilities. Tested on real data, the analysis finds the flagging of ligature points to proportionally increase the match strength of high similarity image-template pairs by about 6%. The effectiveness of this approach is further demonstrated in a real-time multicamera hand tracking system that tracks hand gestures through three-dimensional space as well as estimate the three-dimensional pose of the hand

    SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

    Full text link
    Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1cm position error and <5^\circ$ angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.Comment: IROS camera-read

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader
    • …
    corecore