128 research outputs found

    A logic for model-checking of mean-field models

    Get PDF
    Recently, many systems consisting of a large number of interacting objects were analysed using the mean-field method, which has only been used for performance evaluation. In this short paper, we apply it to model checking. We define logic, which allows to describe the overall properties of the large system

    GCSRL - A Logic for Stochastic Reward Models with Timed and Untimed Behaviour

    Get PDF
    In this paper we define the logic GCSRL (generalised continuous stochastic reward logic) that provides means to reason about systems that have states which sojourn times are either greater zero, in which case this sojourn time is exponentially distributed (tangible states), or zero (vanishing states).\ud In case of generalised stochastic Petri nets (GSPNs) and stochastic process algebras it turned out that these vanishing states can be very useful when it comes to define system behaviour. In the same way these states are useful for defining system properties using stochastic logics. We extend both the semantic model and the semantics of CSRL such that it allows to attach impulse rewards to transitions emanating from vanishing states. We show by means of a small example how model checking GCSRL formulae works

    Beyond Model-Checking CSL for QBDs: Resets, Batches and Rewards

    Get PDF
    We propose and discuss a number of extensions to quasi-birth-death models (QBDs) for which CSL model checking is still possible, thus extending our recent work on CSL model checking of QBDs. We then equip the QBDs with rewards, and discuss algorithms and open research issues for model checking CSRL for QBDs with rewards

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Advancing Dynamic Fault Tree Analysis

    Full text link
    This paper presents a new state space generation approach for dynamic fault trees (DFTs) together with a technique to synthesise failures rates in DFTs. Our state space generation technique aggressively exploits the DFT structure --- detecting symmetries, spurious non-determinism, and don't cares. Benchmarks show a gain of more than two orders of magnitude in terms of state space generation and analysis time. Our approach supports DFTs with symbolic failure rates and is complemented by parameter synthesis. This enables determining the maximal tolerable failure rate of a system component while ensuring that the mean time of failure stays below a threshold

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Distributed Markovian Bisimulation Reduction aimed at CSL Model Checking

    Get PDF
    The verification of quantitative aspects like performance and dependability by means of model checking has become an important and vivid area of research over the past decade.\ud \ud An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time and space complexity of the numerical algorithms make it practically infeasible to model check systems with more than 100 million states, whereas realistic system models may have billions of states.\ud \ud To overcome this severe restriction, it is important to be able to replace the original state space with a probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for a substantial reduction of the state space size. But, these savings in space come at the cost of an increased time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation of the bisimulation quotient of a given state space is introduced.\ud \ud To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed setting, we have performed a number of case studies

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them
    corecore