64,557 research outputs found

    Using memetic algorithm for robustness testing of contract-based software models

    Get PDF
    Graph Transformation System (GTS) can formally specify the behavioral aspects of complex systems through graph-based contracts. Test suite generation under normal conditions from GTS specifications is a task well-suited to evolutionary algorithms such as Genetic and Particle Swarm Optimization (PSO) metaheuristics. However, testing the vulnerabilities of a system under unexpected events such as invalid inputs is essential. Furthermore, the mentioned global search algorithms tend to make big jumps in the system’s state-space that are not concentrated on particular test goals. In this paper, we extend the HGAPSO approach into a cost-aware Memetic Algorithm (MA) by making small local changes through a proposed local search operator to optimize coverage score and testing costs. Moreover, we test GTS specifications not only under normal events but also under unexpected situations. So, three coverage-based testing strategies are investigated, including normal testing, robustness testing, and a hybrid strategy. The effectiveness of the proposed test generation algorithm and the testing strategies are evaluated through a type of mutation analysis at the model-level. Our experimental results show that (1) the hybrid testing strategy outperforms normal and robustness testing strategies in terms of fault-detection capability, (2) the robustness testing is the most cost-efficient strategy, and (3) the proposed MA with the hybrid testing strategy outperforms the state-of-the-art global search algorithms

    A Novel Hybrid CNN-AIS Visual Pattern Recognition Engine

    Full text link
    Machine learning methods are used today for most recognition problems. Convolutional Neural Networks (CNN) have time and again proved successful for many image processing tasks primarily for their architecture. In this paper we propose to apply CNN to small data sets like for example, personal albums or other similar environs where the size of training dataset is a limitation, within the framework of a proposed hybrid CNN-AIS model. We use Artificial Immune System Principles to enhance small size of training data set. A layer of Clonal Selection is added to the local filtering and max pooling of CNN Architecture. The proposed Architecture is evaluated using the standard MNIST dataset by limiting the data size and also with a small personal data sample belonging to two different classes. Experimental results show that the proposed hybrid CNN-AIS based recognition engine works well when the size of training data is limited in siz

    SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities

    Full text link
    Algorithmic complexity vulnerabilities occur when the worst-case time/space complexity of an application is significantly higher than the respective average case for particular user-controlled inputs. When such conditions are met, an attacker can launch Denial-of-Service attacks against a vulnerable application by providing inputs that trigger the worst-case behavior. Such attacks have been known to have serious effects on production systems, take down entire websites, or lead to bypasses of Web Application Firewalls. Unfortunately, existing detection mechanisms for algorithmic complexity vulnerabilities are domain-specific and often require significant manual effort. In this paper, we design, implement, and evaluate SlowFuzz, a domain-independent framework for automatically finding algorithmic complexity vulnerabilities. SlowFuzz automatically finds inputs that trigger worst-case algorithmic behavior in the tested binary. SlowFuzz uses resource-usage-guided evolutionary search techniques to automatically find inputs that maximize computational resource utilization for a given application.Comment: ACM CCS '17, October 30-November 3, 2017, Dallas, TX, US

    Empirical Evaluation of Mutation-based Test Prioritization Techniques

    Full text link
    We propose a new test case prioritization technique that combines both mutation-based and diversity-based approaches. Our diversity-aware mutation-based technique relies on the notion of mutant distinguishment, which aims to distinguish one mutant's behavior from another, rather than from the original program. We empirically investigate the relative cost and effectiveness of the mutation-based prioritization techniques (i.e., using both the traditional mutant kill and the proposed mutant distinguishment) with 352 real faults and 553,477 developer-written test cases. The empirical evaluation considers both the traditional and the diversity-aware mutation criteria in various settings: single-objective greedy, hybrid, and multi-objective optimization. The results show that there is no single dominant technique across all the studied faults. To this end, \rev{we we show when and the reason why each one of the mutation-based prioritization criteria performs poorly, using a graphical model called Mutant Distinguishment Graph (MDG) that demonstrates the distribution of the fault detecting test cases with respect to mutant kills and distinguishment

    Supervised learning with hybrid global optimisation methods

    Get PDF

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers
    • …
    corecore