2 research outputs found

    Model-assisted validation of a strain-based dense sensor network

    Get PDF
    Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space model, coupled with an adaptive mechanism based on sliding mode theory, to update the stiffness matrix to best match the measured responses, assuming knowledge of the mass matrix and damping parameters. Second, the physics-driven surrogate model is used to conduct a series of numerical simulations to map damages of interest to relevant features extracted from the synthetic signals that integrate uncertainties propagating through the physical representation. The capacity of the algorithm at detecting and localizing damages is quantified through probability of detection (POD) maps. It follows that such POD maps provide a direct quantification of the DSNs’ capability at conducting its SHM task. The proposed approach is demonstrated using numerical simulations on a cantilevered plate elastically restrained at the root equipped with strain gauges, where the damage of interest is a change in the root’s bending rigidity

    Model-Assisted Probability of Detection for Structural Health Monitoring of Flat Plates

    No full text
    The paper presents a computational framework for assessing quantitatively the detection capability of structural health monitoring (SHM) systems for flat plates. The detection capability is quantified using the probability of detection (POD) metric, developed within the area of nondestructive testing, which accounts for the variability of the uncertain system parameters and describes the detection accuracy using confidence bounds. SHM provides the capability of continuously monitoring the structural integrity using multiple sensors placed sensibly on the structure. It is important that the SHM can reliably and accurately detect damage when it occurs. The proposed computational framework models the structural behavior of flat plate using a spring-mass system with a lumped mass at each sensor location. The quantity of interest is the degree of damage of the plate, which is defined in this work as the difference in the strain field of a damaged plate with respect to the strain field of the healthy plate. The computational framework determines the POD based on the degree of damage of the plate for a given loading condition. The proposed approach is demonstrated on a numerical example of a flat plate with two sides fixed and a load acting normal to the surface. The POD is estimated for two uncertain parameters, the plate thickness and the modulus of elasticity of the material, and a damage located in one spot of the plate. The results show that the POD is close to zero for small loads, but increases quickly with increasing loads
    corecore