4,347,786 research outputs found

    Optimal predictive model selection

    Full text link
    Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. Under the Bayesian approach, it is commonly perceived that the optimal predictive model is the model with highest posterior probability, but this is not necessarily the case. In this paper we show that, for selection among normal linear models, the optimal predictive model is often the median probability model, which is defined as the model consisting of those variables which have overall posterior probability greater than or equal to 1/2 of being in a model. The median probability model often differs from the highest probability model

    Model fit and model selection

    Get PDF
    This paper uses an example to show that a model that fits the available data perfectly may provide worse answers to policy questions than an alternative, imperfectly fitting model. The author argues that, in the context of Bayesian estimation, this result can be interpreted as being due to the use of an inappropriate prior over the parameters of shock processes. He urges the use of priors that are obtained from explicit auxiliary information, not from the desire to obtain identification.Econometric models ; Macroeconomics

    Bootstrap for neural model selection

    Full text link
    Bootstrap techniques (also called resampling computation techniques) have introduced new advances in modeling and model evaluation. Using resampling methods to construct a series of new samples which are based on the original data set, allows to estimate the stability of the parameters. Properties such as convergence and asymptotic normality can be checked for any particular observed data set. In most cases, the statistics computed on the generated data sets give a good idea of the confidence regions of the estimates. In this paper, we debate on the contribution of such methods for model selection, in the case of feedforward neural networks. The method is described and compared with the leave-one-out resampling method. The effectiveness of the bootstrap method, versus the leave-one-out methode, is checked through a number of examples.Comment: A la suite de la conf\'{e}rence ESANN 200

    Model selection for amplitude analysis

    Get PDF
    Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of possible amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a method for limiting model complexity from the data sample itself through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. An outline of how to obtain the significance of a resonance in a multivariate amplitude analysis is also provided
    corecore