44,412 research outputs found

    Examples of governings with predictive controls

    Get PDF
    Tato diplomová práce se zabývá prediktivním řízením, hlavně Model Based Predictive Control (MPC). V první částí je popsán princip prediktivního řízení, kriteriální funkce, volba omezení regulace a volba pokut. V další částí je proveden rozbor soustav: soustava s neminimální fází (regulace vodní turbíny), kmitavá soustava (regulace jeřábové kočky) a soustava s dopravním zpožděním. U všech těchto soustav je provedena klasická zpětnovazební regulace pomocí PID regulátoru a souběžně regulace s MPC. Jako MPC je zvoleno řešení fy Mathworks Model Predictive Control Toolbox a Simulink. Výsledky jsou poté analyzovány pomocí kritérií kvality regulace.This thesis deals with model predictive control principally Based Predictive Control (MPC). The first part describes the principle of predictive control, cost function, the choice of a constraints in regulation and the choice of weights. In the next section is an analysis system: a system with non-minimal phase (control water turbine), oscillating systems (trolley frame control) and system with a time-delay . In all of these systems is performed classical feedback control using PID control and concurrently regulation with the MPC. MPC is selected as the solution fy Mathworks Model Predictive Control Toolbox and Simulink. The results are then analyzed using the criteria of quality control.

    Iterative Nonlinear Control of a Semibatch Reactor. Stability Analysis

    Get PDF
    This paper presents the application of Iterative Nonlinear Model Predictive Control, INMPC, to a semibatch chemical reactor. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (MPC) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. A stability proof with unitary control horizon is given for nonlinear plants that are affine in control and have linear output map. The controller shows capabilities to learn the optimal trajectory after a few iterations, giving a better fit than a linear non-iterative MPC controller. The controller has applications in repetitive disturbance rejection, because they do not modify the model for control purposes. In this application, some experiments with a disturbance in inlet water temperature has been performed, getting good results.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-0

    Adaptive Horizon Model Predictive Control and Al'brekht's Method

    Get PDF
    A standard way of finding a feedback law that stabilizes a control system to an operating point is to recast the problem as an infinite horizon optimal control problem. If the optimal cost and the optmal feedback can be found on a large domain around the operating point then a Lyapunov argument can be used to verify the asymptotic stability of the closed loop dynamics. The problem with this approach is that is usually very difficult to find the optimal cost and the optmal feedback on a large domain for nonlinear problems with or without constraints. Hence the increasing interest in Model Predictive Control (MPC). In standard MPC a finite horizon optimal control problem is solved in real time but just at the current state, the first control action is implimented, the system evolves one time step and the process is repeated. A terminal cost and terminal feedback found by Al'brekht's methoddefined in a neighborhood of the operating point is used to shorten the horizon and thereby make the nonlinear programs easier to solve because they have less decision variables. Adaptive Horizon Model Predictive Control (AHMPC) is a scheme for varying the horizon length of Model Predictive Control (MPC) as needed. Its goal is to achieve stabilization with horizons as small as possible so that MPC methods can be used on faster and/or more complicated dynamic processes.Comment: arXiv admin note: text overlap with arXiv:1602.0861

    Model Predictive Control meets robust Kalman filtering

    Full text link
    Model Predictive Control (MPC) is the principal control technique used in industrial applications. Although it offers distinguishable qualities that make it ideal for industrial applications, it can be questioned its robustness regarding model uncertainties and external noises. In this paper we propose a robust MPC controller that merges the simplicity in the design of MPC with added robustness. In particular, our control system stems from the idea of adding robustness in the prediction phase of the algorithm through a specific robust Kalman filter recently introduced. Notably, the overall result is an algorithm very similar to classic MPC but that also provides the user with the possibility to tune the robustness of the control. To test the ability of the controller to deal with errors in modeling, we consider a servomechanism system characterized by nonlinear dynamics

    High-order volterra model predictive control and its application to a nonlinear polymerisation process

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but the existing design and implementation methods are restricted to linear process models. A chemical process involves, however, severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC), and also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design which relieves practising engineers from the need for first deriving a physical-principles based model. An on-line realisation technique for implementing the NMPC is also developed. The NMPC is then applied to a Mitsubishi Chemicals polymerisation reaction process. The results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the approach developed lie not only in control performance superior to existing NMPC methods, but also in relieving practising engineers from the need for deriving an analytical model and then converting it to a Volterra model through which the model can only be obtained up to the second order

    Sensitivity-based multistep MPC for embedded systems

    Get PDF
    In model predictive control (MPC), an optimization problem is solved every sampling instant to determine an optimal control for a physical system. We aim to accelerate this procedure for fast systems applications and address the challenge of implementing the resulting MPC scheme on an embedded system with limited computing power. We present the sensitivity-based multistep MPC, a strategy which considerably reduces the computing requirements in terms of floating point operations (FLOPs), compared to a standard MPC formulation, while fulfilling closed- loop performance expectations. We illustrate by applying the method to a DC-DC converter model and show how a designer can optimally trade off closed-loop performance considerations with computing requirements in order to fit the controller into a resource-constrained embedded system
    corecore