3,754,135 research outputs found
Model identification and model analysis in robot training
Robot training is a fast and efficient method of obtaining robot control code. Many current machine learning paradigms used for this purpose, however, result in opaque models that are difficult, if not impossible to analyse, which is an impediment in safety-critical applications or application
scenarios where humans and robots occupy the same workspace.
In experiments with a Magellan Pro mobile robot we demonstrate that it is possible to obtain transparent models of sensor-motor couplings that are amenable to subsequent analysis, and how such analysis can be used
to refine and tune the models post hoc
CEAI: CCM based Email Authorship Identification Model
In this paper we present a model for email authorship identification (EAI) by
employing a Cluster-based Classification (CCM) technique. Traditionally,
stylometric features have been successfully employed in various authorship
analysis tasks; we extend the traditional feature-set to include some more
interesting and effective features for email authorship identification (e.g.
the last punctuation mark used in an email, the tendency of an author to use
capitalization at the start of an email, or the punctuation after a greeting or
farewell). We also included Info Gain feature selection based content features.
It is observed that the use of such features in the authorship identification
process has a positive impact on the accuracy of the authorship identification
task. We performed experiments to justify our arguments and compared the
results with other base line models. Experimental results reveal that the
proposed CCM-based email authorship identification model, along with the
proposed feature set, outperforms the state-of-the-art support vector machine
(SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The
proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25
authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5%
accuracy has been achieved on authors' constructed real email dataset. The
results on Enron dataset have been achieved on quite a large number of authors
as compared to the models proposed by Iqbal et al. [1, 2]
Phonetic Temporal Neural Model for Language Identification
Deep neural models, particularly the LSTM-RNN model, have shown great
potential for language identification (LID). However, the use of phonetic
information has been largely overlooked by most existing neural LID methods,
although this information has been used very successfully in conventional
phonetic LID systems. We present a phonetic temporal neural model for LID,
which is an LSTM-RNN LID system that accepts phonetic features produced by a
phone-discriminative DNN as the input, rather than raw acoustic features. This
new model is similar to traditional phonetic LID methods, but the phonetic
knowledge here is much richer: it is at the frame level and involves compacted
information of all phones. Our experiments conducted on the Babel database and
the AP16-OLR database demonstrate that the temporal phonetic neural approach is
very effective, and significantly outperforms existing acoustic neural models.
It also outperforms the conventional i-vector approach on short utterances and
in noisy conditions.Comment: Submitted to TASL
- …
