218,358 research outputs found
User oriented access to secure biomedical resources through the grid
The life science domain is typified by heterogeneous data sets that are evolving at an exponential rate. Numerous post-genomic databases and areas of post-genomic life science research have been established and are being actively explored. Whilst many of these databases are public and freely accessible, it is often the case that researchers have data that is not so freely available and access to this data needs to be strictly controlled when distributed collaborative research is undertaken. Grid technologies provide one mechanism by which access to and integration of federated data sets is possible. Combining such data access and integration technologies with fine grained security infrastructures facilitates the establishment of virtual organisations (VO). However experience has shown that the general research (non-Grid) community are not comfortable with the Grid and its associated security models based upon public key infrastructures (PKIs). The Internet2 Shibboleth technology helps to overcome this through users only having to log in to their home site to gain access to resources across a VO – or in Shibboleth terminology a federation. In this paper we outline how we have applied the combination of Grid technologies, advanced security infrastructures and the Internet2 Shibboleth technology in several biomedical projects to provide a user-oriented model for secure access to and usage of Grid resources. We believe that this model may well become the de facto mechanism for undertaking e-Research on the Grid across numerous domains including the life sciences
Collaborative Infrastructures for Mobilizing Intellectual Resources: assessing intellectual bandwidth in a knowledge intensive organization
The use of intellectual assets of key professionals to provide customized goods and services is seen to be a key characteristic of knowledge intensive organizations. While knowledge management efforts have become popular in organizations that depend on the knowledge and skills of their employees, it is unclear what the benefits of such efforts are and how these intellectual resources may actually create value for the organization. At the same time, vast information and communication technology infrastructures are being implemented to tap into the diverse intellectual resources to little effect. This paper uses the Intellectual Bandwidth Model originally developed by Nunamaker et al. (2001) to investigate the extent to which do collaborative technologies support the mobilization of intellectual resources to create value for an organization. Following a investigation of the intellectual bandwidth of a large multinational consulting company, this paper provides insight into the role of technology for mobilizing intellectual resources and offers implications for developing infrastructure to support core business processes
Intelligent management experience on efficient electric power system
Electric power system is one of the most critical
and strategic infrastructures of industrial societies. Nowadays, it
is necessary the modernization and automation of the electric
power grid to increase energy efficiency, reduce emissions, and
transit to renewable energy. Power utilities face the challenge of
using information and communication networks more effectively
to manage the demand, generation, transmission, and distribution
of their commodity services. Communication network
constitutes the core of the electric system automation
applications, the design of a cost-effective, and reliable network
architecture is crucial. To resolve this difficulty in this work we
study the integration of advanced artificial intelligence
technology into existing network management system. This
work focuses on an intelligent framework and a language for
formalizing knowledge management descriptions and combining
them with existing OSI management model. We have
normalized the knowledge management base necessary to
manage the current resources in the telecommunication
networks. Intelligent agents learn the normal behaviour of each
measurement variable and combine the intelligent knowledge for
the management of the network resources. We present an
analysis of corporate network management requirements and
technologies, together with our implementation experience with
the development of an integrated management system for a
company network
E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury
Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented
A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures
This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes
Digital Preservation Services : State of the Art Analysis
Research report funded by the DC-NET project.An overview of the state of the art in service provision for digital preservation and curation. Its focus is on the areas where bridging the gaps is needed between e-Infrastructures and efficient and forward-looking digital preservation services. Based on a desktop study and a rapid analysis of some 190 currently available tools and services for digital preservation, the deliverable provides a high-level view on the range of instruments currently on offer to support various functions within a preservation system.European Commission, FP7peer-reviewe
Survey and Analysis of Production Distributed Computing Infrastructures
This report has two objectives. First, we describe a set of the production
distributed infrastructures currently available, so that the reader has a basic
understanding of them. This includes explaining why each infrastructure was
created and made available and how it has succeeded and failed. The set is not
complete, but we believe it is representative.
Second, we describe the infrastructures in terms of their use, which is a
combination of how they were designed to be used and how users have found ways
to use them. Applications are often designed and created with specific
infrastructures in mind, with both an appreciation of the existing capabilities
provided by those infrastructures and an anticipation of their future
capabilities. Here, the infrastructures we discuss were often designed and
created with specific applications in mind, or at least specific types of
applications. The reader should understand how the interplay between the
infrastructure providers and the users leads to such usages, which we call
usage modalities. These usage modalities are really abstractions that exist
between the infrastructures and the applications; they influence the
infrastructures by representing the applications, and they influence the ap-
plications by representing the infrastructures
- …
