3,822,864 research outputs found

    Model identification and model analysis in robot training

    Get PDF
    Robot training is a fast and efficient method of obtaining robot control code. Many current machine learning paradigms used for this purpose, however, result in opaque models that are difficult, if not impossible to analyse, which is an impediment in safety-critical applications or application scenarios where humans and robots occupy the same workspace. In experiments with a Magellan Pro mobile robot we demonstrate that it is possible to obtain transparent models of sensor-motor couplings that are amenable to subsequent analysis, and how such analysis can be used to refine and tune the models post hoc

    Training samples in objective Bayesian model selection

    Full text link
    Central to several objective approaches to Bayesian model selection is the use of training samples (subsets of the data), so as to allow utilization of improper objective priors. The most common prescription for choosing training samples is to choose them to be as small as possible, subject to yielding proper posteriors; these are called minimal training samples. When data can vary widely in terms of either information content or impact on the improper priors, use of minimal training samples can be inadequate. Important examples include certain cases of discrete data, the presence of censored observations, and certain situations involving linear models and explanatory variables. Such situations require more sophisticated methods of choosing training samples. A variety of such methods are developed in this paper, and successfully applied in challenging situations

    Unsupervised Training for 3D Morphable Model Regression

    Full text link
    We present a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs. The training loss is based on features from a facial recognition network, computed on-the-fly by rendering the predicted faces with a differentiable renderer. To make training from features feasible and avoid network fooling effects, we introduce three objectives: a batch distribution loss that encourages the output distribution to match the distribution of the morphable model, a loopback loss that ensures the network can correctly reinterpret its own output, and a multi-view identity loss that compares the features of the predicted 3D face and the input photograph from multiple viewing angles. We train a regression network using these objectives, a set of unlabeled photographs, and the morphable model itself, and demonstrate state-of-the-art results.Comment: CVPR 2018 version with supplemental material (http://openaccess.thecvf.com/content_cvpr_2018/html/Genova_Unsupervised_Training_for_CVPR_2018_paper.html

    Noise adaptive training for subspace Gaussian mixture models

    Get PDF
    Noise adaptive training (NAT) is an effective approach to normalise the environmental distortions in the training data. This paper investigates the model-based NAT scheme using joint uncertainty decoding (JUD) for subspace Gaussian mixture models (SGMMs). A typical SGMM acoustic model has much larger number of surface Gaussian components, which makes it computationally infeasible to compensate each Gaussian explicitly. JUD tackles the problem by sharing the compensation parameters among the Gaussians and hence reduces the computational and memory demands. For noise adaptive training, JUD is reformulated into a generative model, which leads to an efficient expectation-maximisation (EM) based algorithm to update the SGMM acoustic model parameters. We evaluated the SGMMs with NAT on the Aurora 4 database, and obtained higher recognition accuracy compared to systems without adaptive training. Index Terms: adaptive training, noise robustness, joint uncertainty decoding, subspace Gaussian mixture model

    E-learning-based Training Model for Accounting Teachers

    Full text link
    : E-Learning-Based Training Model for Accounting Teachers. To improve the competencies of teachers located on remote and diverse areas, it is viable and commendable to implement e-learning-based training. In view of this purpose, the present action research examines the effectiveness of e-learning-based training for accounting teachers. The findings reveal that teachers with poor ICT skills need to take orientation around online class first in order to get familiar with the use of ICT for learning purposes. Meanwhile, teachers with good ICT skills are able to engage directly in the training. The re­search project also shows that the effectiveness of training can be achieved through sequentially organ­ized materials and accessed through the learning progress of the trainees. Encouragement to the trainees for active involvement in the discussion forums during the training results in high final scores at the end of the training session
    corecore