1,012,677 research outputs found

    Model checking polygonal differential inclusions using invariance kernels

    Get PDF
    Polygonal hybrid systems are a subclass of planar hybrid automata which can be represented by piecewise constant differential inclusions. Here, we identify and compute an important object of such systems’ phase portrait, namely invariance kernels. An invariant set is a set of initial points of trajectories which keep rotating in a cycle forever and the invariance kernel is the largest of such sets. We show that this kernel is a non-convex polygon and we give a non-iterative algorithm for computing the coordinates of its vertices and edges. Moreover, we present a breadth-first search algorithm for solving the reachability problem for such systems. Invariance kernels play an important role in the algorithm.peer-reviewe

    Quantifying Information Leaks Using Reliability Analysis

    Get PDF
    acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4We report on our work-in-progress into the use of reliability analysis to quantify information leaks. In recent work we have proposed a software reliability analysis technique that uses symbolic execution and model counting to quantify the probability of reaching designated program states, e.g. assert violations, under uncertainty conditions in the environment. The technique has many applications beyond reliability analysis, ranging from program understanding and debugging to analysis of cyber-physical systems. In this paper we report on a novel application of the technique, namely Quantitative Information Flow analysis (QIF). The goal of QIF is to measure information leakage of a program by using information-theoretic metrics such as Shannon entropy or Renyi entropy. We exploit the model counting engine of the reliability analyzer over symbolic program paths, to compute an upper bound of the maximum leakage over all possible distributions of the confidential data. We have implemented our approach into a prototype tool, called QILURA, and explore its effectiveness on a number of case studie

    Model checking usage policies

    Get PDF
    We study usage automata, a formal model for specifying policies on the usage of resources. Usage automata extend finite state automata with some additional features, parameters and guards, that improve their expressivity. We show that usage automata are expressive enough to model policies of real-world applications. We discuss their expressive power, and we prove that the problem of telling whether a computation complies with a usage policy is decidable. The main contribution of this paper is a model checking technique for usage automata. The model is that of usages, i.e. basic processes that describe the possible patterns of resource access and creation. In spite of the model having infinite states, because of recursion and resource creation, we devise a polynomial-time model checking technique for deciding when a usage complies with a usage policy

    Model Checking Parse Trees

    Full text link
    Parse trees are fundamental syntactic structures in both computational linguistics and compilers construction. We argue in this paper that, in both fields, there are good incentives for model-checking sets of parse trees for some word according to a context-free grammar. We put forward the adequacy of propositional dynamic logic (PDL) on trees in these applications, and study as a sanity check the complexity of the corresponding model-checking problem: although complete for exponential time in the general case, we find natural restrictions on grammars for our applications and establish complexities ranging from nondeterministic polynomial time to polynomial space in the relevant cases.Comment: 21 + x page

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming
    corecore