16,779 research outputs found

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Dynamic Compressive Sensing of Time-Varying Signals via Approximate Message Passing

    Full text link
    In this work the dynamic compressive sensing (CS) problem of recovering sparse, correlated, time-varying signals from sub-Nyquist, non-adaptive, linear measurements is explored from a Bayesian perspective. While there has been a handful of previously proposed Bayesian dynamic CS algorithms in the literature, the ability to perform inference on high-dimensional problems in a computationally efficient manner remains elusive. In response, we propose a probabilistic dynamic CS signal model that captures both amplitude and support correlation structure, and describe an approximate message passing algorithm that performs soft signal estimation and support detection with a computational complexity that is linear in all problem dimensions. The algorithm, DCS-AMP, can perform either causal filtering or non-causal smoothing, and is capable of learning model parameters adaptively from the data through an expectation-maximization learning procedure. We provide numerical evidence that DCS-AMP performs within 3 dB of oracle bounds on synthetic data under a variety of operating conditions. We further describe the result of applying DCS-AMP to two real dynamic CS datasets, as well as a frequency estimation task, to bolster our claim that DCS-AMP is capable of offering state-of-the-art performance and speed on real-world high-dimensional problems.Comment: 32 pages, 7 figure

    Learning Linear Dynamical Systems via Spectral Filtering

    Full text link
    We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm with a near-optimal regret guarantee, with an analogous sample complexity bound for agnostic learning. Our algorithm is based on a novel filtering technique, which may be of independent interest: we convolve the time series with the eigenvectors of a certain Hankel matrix.Comment: Published as a conference paper at NIPS 201
    • …
    corecore