421 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Throughput and Robustness Guaranteed Beam Tracking for mmWave Wireless Networks

    Full text link
    With the increasing demand of ultra-high-speed wireless communications and the existing low frequency band (e.g., sub-6GHz) becomes more and more crowded, millimeter-wave (mmWave) with large spectra available is considered as the most promising frequency band for future wireless communications. Since the mmWave suffers a serious path-loss, beamforming techniques shall be adopted to concentrate the transmit power and receive region on a narrow beam for achieving long distance communications. However, the mobility of users will bring frequent beam handoff, which will decrease the quality of experience (QoE). Therefore, efficient beam tracking mechanism should be carefully researched. However, the existing beam tracking mechanisms concentrate on system throughput maximization without considering beam handoff and link robustness. This paper proposes a throughput and robustness guaranteed beam tracking mechanism for mobile mmWave communication systems which takes account of both system throughput and handoff probability. Simulation results show that the proposed throughput and robustness guaranteed beam tracking mechanism can provide better performance than the other beam tracking mechanisms.Comment: Accepted by IEEE/CIC ICCC 201

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Multi-layer Utilization of Beamforming in Millimeter Wave MIMO Systems

    Get PDF
    mmWave frequencies ranging between (30-300GHz) have been considered the perfect solution to the scarcity of bandwidth in the traditional sub-6GHz band and to the ever increasing demand of many emerging applications in today\u27s era. 5G and beyond standards are all considering the mmWave as an essential part of there networks. Beamforming is one of the most important enabling technologies for the mmWave to compensate for the huge propagation lose of these frequencies compared to the sub-6GHz frequencies and to ensure better spatial and spectral utilization of the mmWave channel space. In this work, we tried to develop different techniques to improve the performance of the systems that use mmWave. In the physical layer, we suggested several hybrid beamforming architectures that both are relatively simple and spectrally efficient by achieving fully digital like spectral efficiency (bits/sec/Hz). For the mobility management, we derived the expected degradation that can affect the performance of a special type of beamforming that is called the Random Beamforming (RBF) and optimized the tunable parameters for such systems when working in different environments. Finally, in the networking layer, we first studied the effect of using mmWave frequencies on the routing performance comparing to the performance achieved when using sub-6 GHz frequencies. Then we developed a novel opportunistic routing protocol for Mobile Ad-Hoc Networks (MANET) that uses a modified version of the Random Beamforming (RBF) to achieve better end to end performance and to reduce the overall delay in delivering data from transmitting nodes to the intended receiving nodes. From all these designs and studies, we conclude that mmWave frequencies and their enabling technologies (i.e. Beamforming, massive MIMO, ...etc.) are indeed the future of wireless communicatons in a high demanding world of Internet of Things (IoT), Augmented Reality (AR), Virtual Reality (VR), and self driving cars

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain
    corecore