3 research outputs found

    Geometry-based stochastic physical channel modeling for cellular environments

    Full text link
    Telecommunication has experienced significant changes over the past few years and its paradigm has moved from wired to wireless communications. The wireless channel constitutes the basic physical link between the transmitter and the receiver antennas. Therefore, complete knowledge of the wireless channel and radio propagation environment is necessary in order to design efficient wireless communication systems. This PhD thesis is devoted to studying the spatial and temporal statistics of the wireless channel in cellular environments based on a geometry-based stochastic physical channel modeling approach. Contributions in this thesis report include the following: • A new physical channel model called the eccentro-scattering model is proposed to study the spatial and temporal statistics of the multipath signals in cellular environments. • Generic closed-form formulas for the probability density function (pdf) of angle of arrival (AoA) and time of arrival (ToA) of the multipath signals in each cellular environment are derived. These formulas can be helpful for the design and evaluation of modern communication systems. • A new Gaussian scattering model is proposed, which consists of two Gaussian functions for the distribution of scatterers around base station (BS) and mobile station (MS) and confines these scatterers within a scattering disc. • The effect of mobile motion on the spatial and temporal statistics of the multipath signals in cellular environments is discussed. Three motion scenarios are considered for the possible trajectory of the mobile unit. Furthermore, two different cases are identified when the terrain and clutter of mobile surrounding have additional effect on the temporal spread of the multipath signals during motion. • The physical channel model is employed to assess the performance of a RAKE receiver in cellular environments. • Comparisons between uniform scattering and Gaussian scattering, which are the two assumptions for the distribution of scatterers usually used in the derivation of the pdf of AoA, are also presented. • An overview of earlier physical channel models and comparisons between these models and with the proposed model are presented

    Mobility Characteristics for Multimedia Service Adaptation

    No full text
    In personal communications systems, it is an emerging necessity to adapt services prior to delivery according to up-to-date customer profiles and mobility behaviors. Therefore, it is important to determine distinct mobility descriptors that would successfully model the entire sample space of different mobility characteristics. The aim of this paper is to define unique descriptors that are to be extracted from mobility patterns of a single mobile user and to investigate the level of distinctness of each defined descriptor. We finally show how the studied descriptors can be used in service adaptation
    corecore