4,276 research outputs found

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Big Data Privacy Context: Literature Effects On Secure Informational Assets

    Get PDF
    This article's objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities.Comment: 21 pages, 9 figure

    Homomorphic Proximity Computation in Geosocial Networks

    Get PDF
    With the growing popularity of mobile devices that have sophisticated localization capability, it becomes more convenient and tempting to give away location data in exchange for recognition and status in the social networks. Geosocial networks, as an example, offer the ability to notify a user or trigger a service when a friend is within geographical proximity. In this paper, we present two methods to support secure distance computation on encrypted location data; that is, computing distance functions without knowing the actual coordinates of users. The underlying security is ensured by the homomorphic encryption scheme which supports computation on encrypted data. We demonstrate feasibility of the proposed approaches by conducting various performance evaluations on platforms with different specifications. We argue that the novelty of this work enables a new breed of pervasive and mobile computing concepts, which was previously not possible due to the lack of feasible mechanisms that support computation on encrypted location data

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work
    corecore