394 research outputs found

    Mobile Jammers for Secrecy Rate Maximization in Cooperative Networks

    Full text link
    We consider a source (Alice) trying to communicate with a destination (Bob), in a way that an unauthorized node (Eve) cannot infer, based on her observations, the information that is being transmitted. The communication is assisted by multiple multi-antenna cooperating nodes (helpers) who have the ability to move. While Alice transmits, the helpers transmit noise that is designed to affect the entire space except Bob. We consider the problem of selecting the helper weights and positions that maximize the system secrecy rate. It turns out that this optimization problem can be efficiently solved, leading to a novel decentralized helper motion control scheme. Simulations indicate that introducing helper mobility leads to considerable savings in terms of helper transmit power, as well as total number of helpers required for secrecy communications.Comment: ICASSP 201

    Throughput Scaling Laws for Wireless Networks with Fading Channels

    Full text link
    A network of n communication links, operating over a shared wireless channel, is considered. Fading is assumed to be the dominant factor affecting the strength of the channels between transmitter and receiver terminals. It is assumed that each link can be active and transmit with a constant power P or remain silent. The objective is to maximize the throughput over the selection of active links. By deriving an upper bound and a lower bound, it is shown that in the case of Rayleigh fading (i) the maximum throughput scales like logn\log n (ii) the maximum throughput is achievable in a distributed fashion. The upper bound is obtained using probabilistic methods, where the key point is to upper bound the throughput of any random set of active links by a chi-squared random variable. To obtain the lower bound, a decentralized link activation strategy is proposed and analyzed.Comment: Submitted to IEEE Transactions on Information Theory (Revised

    A practical framework for data collection in wireless sensor networks

    Full text link
    Optimizing energy consumption for extending the lifetime in wireless sensor networks is of dominant importance. Groups of autonomous robots and unmanned aerial vehicles (UAVs) acting as mobile data collectors are utilized to minimize the energy expenditure of the sensor nodes by approaching the sensors and collecting their buffers via single hop communication, rather than using multihop routing to forward the buffers to the base station. This paper models the sensor network and the mobile collectors as a system-of-systems, and defines all levels and types of interactions. A practical framework that facilitates deploying heterogeneous mobiles without prior knowledge about the sensor network is presented. Realizing the framework is done through simulation experiments and tested against several performance metrics.<br /

    Throughput capacity of two-hop relay MANETs under finite buffers

    Full text link
    Since the seminal work of Grossglauser and Tse [1], the two-hop relay algorithm and its variants have been attractive for mobile ad hoc networks (MANETs) due to their simplicity and efficiency. However, most literature assumed an infinite buffer size for each node, which is obviously not applicable to a realistic MANET. In this paper, we focus on the exact throughput capacity study of two-hop relay MANETs under the practical finite relay buffer scenario. The arrival process and departure process of the relay queue are fully characterized, and an ergodic Markov chain-based framework is also provided. With this framework, we obtain the limiting distribution of the relay queue and derive the throughput capacity under any relay buffer size. Extensive simulation results are provided to validate our theoretical framework and explore the relationship among the throughput capacity, the relay buffer size and the number of nodes

    Mobile Conductance in Sparse Networks and Mobility-Connectivity Tradeoff

    Full text link
    In this paper, our recently proposed mobile-conductance based analytical framework is extended to the sparse settings, thus offering a unified tool for analyzing information spreading in mobile networks. A penalty factor is identified for information spreading in sparse networks as compared to the connected scenario, which is then intuitively interpreted and verified by simulations. With the analytical results obtained, the mobility-connectivity tradeoff is quantitatively analyzed to determine how much mobility may be exploited to make up for network connectivity deficiency.Comment: Accepted to ISIT 201

    A Geometric Theorem for Network Design

    Get PDF
    Consider an infinite square grid G. How many discs of given radius r, centered at the vertices of G, are required, in the worst case, to completely cover an arbitrary disc of radius r placed on the plane? We show that this number is an integer in the set {3,4,5,6} whose value depends on the ratio of r to the grid spacing. One application of this result is to design facility location algorithms with constant approximation factors. Another application is to determine if a grid network design, where facilities are placed on a regular grid in a way that each potential customer is within a reasonably small radius around the facility, is cost effective in comparison to a nongrid design. This can be relevant to determine a cost effective design for base station placement in a wireless network

    The heterogeneity of inter-contact time distributions: its importance for routing in delay tolerant networks

    Full text link
    Prior work on routing in delay tolerant networks (DTNs) has commonly made the assumption that each pair of nodes shares the same inter-contact time distribution as every other pair. The main argument in this paper is that researchers should also be looking at heterogeneous inter-contact time distributions. We demonstrate the presence of such heterogeneity in the often-used Dartmouth Wi-Fi data set. We also show that DTN routing can benefit from knowing these distributions. We first introduce a new stochastic model focusing on the inter-contact time distributions between all pairs of nodes, which we validate on real connectivity patterns. We then analytically derive the mean delivery time for a bundle of information traversing the network for simple single copy routing schemes. The purpose is to examine the theoretic impact of heterogeneous inter-contact time distributions. Finally, we show that we can exploit this user diversity to improve routing performance.Comment: 6 page
    corecore