1 research outputs found

    Artificial intelligence-powered mobile edge computing-based anomaly detection in cellular networks

    Get PDF
    Escalating cell outages and congestion-treated as anomalies-cost a substantial revenue loss to the cellular operators and severely affect subscriber quality of experience. Stateof-the-art literature applies feed-forward deep neural network at core network (CN) for the detection of above problems in a single cell; however, the solution is impractical as it will overload the CN that monitors thousands of cells at a time. Inspired from mobile edge computing and breakthroughs of deep convolutional neural networks (CNNs) in computer vision research, we split the network into several 100-cell regions each monitored by an edge server; and propose a framework that pre-processes raw call detail records having user activities to create an image-like volume, fed to a CNN model. The framework outputs a multilabeled vector identifying anomalous cell(s). Our results suggest that our solution can detect anomalies with up to 96% accuracy, and is scalable and expandable for industrial Internet of things environment
    corecore