1,302 research outputs found

    Energy-efficient wireless communication for mobile multimedia terminals

    Get PDF
    This paper presents a control system that adapts a WCDMA receiver at run-time to minimize the energy consumption while providing an adequate Quality of Service (QoS). The adaptation is done at run-time, because of the dynamic environment of a mobile receiver. Simulations show that run-time adaptation to the environment decreases the energy consumption of a receiver and also improves other QoS parameters, such as a higher throughput and a lower frame error rate

    Sub-Surface Navigation Using Very-Low Frequency Electromagnetic Waves

    Get PDF
    This research proposes two schemes utilizing very-low frequency (VLF) electromagnetic waves to navigate underground. The first scheme consists of using above-ground beacon transmitters to broadcast VLF signals to an underground mobile receiver which uses methods such as triangulation and trilateration to obtain a position solution. The second scheme consists of using above-ground reference receivers along with an underground mobile receiver to form time-difference- of-arrival measurements of incoming VLF signals of opportunity, such as lightning strike emissions, to calculate a position solution. The objective of this thesis is to develop positioning algorithms and use simulations as a tool to characterize the effects that varying parameters such as measurement errors, measurement type, number of measurements, transmitter/ reference receiver location, mobile receiver position, and material constant errors have on the accuracy of a position solution. The results show trends that would still be expected using more complex methods and models

    A Software-Defined Multi-Element VLC Architecture

    Full text link
    In the modern era of radio frequency (RF) spectrum crunch, visible light communication (VLC) is a recent and promising alternative technology that operates at the visible light spectrum. Thanks to its unlicensed and large bandwidth, VLC can deliver high throughput, better energy efficiency, and low cost data communications. In this article, a hybrid RF/VLC architecture is considered that can simultaneously provide light- ing and communication coverage across a room. Considered architecture involves a novel multi-element hemispherical bulb design, which can transmit multiple data streams over light emitting diode (LED) modules. Simulations considering various VLC transmitter configurations and topologies show that good link quality and high spatial reuse can be maintained in typical indoor communication scenarios

    Power Efficient MISO Beamforming for Secure Layered Transmission

    Full text link
    This paper studies secure layered video transmission in a multiuser multiple-input single-output (MISO) beamforming downlink communication system. The power allocation algorithm design is formulated as a non-convex optimization problem for minimizing the total transmit power while guaranteeing a minimum received signal-to-interference-plus-noise ratio (SINR) at the desired receiver. In particular, the proposed problem formulation takes into account the self-protecting architecture of layered transmission and artificial noise generation to prevent potential information eavesdropping. A semi-definite programming (SDP) relaxation based power allocation algorithm is proposed to obtain an upper bound solution. A sufficient condition for the global optimal solution is examined to reveal the tightness of the upper bound solution. Subsequently, two suboptimal power allocation schemes with low computational complexity are proposed for enabling secure layered video transmission. Simulation results demonstrate significant transmit power savings achieved by the proposed algorithms and layered transmission compared to the baseline schemes.Comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 201
    • …
    corecore