1,000 research outputs found

    A Review of TV White Space Technology and its Deployments in Africa

    Get PDF
    The emergence of bandwidth-driven applications in the current wireless communication environment is driving a paradigm shift from the conventional fixed spectrum assignment policy to intelligent and dynamic spectrum access. Practical demands for efficient spectrum utilization have continued to drive the development of TV white space technology to provide affordable and reliable wireless connectivity. It is envisaged that transition from analogue transmission to Digital Terrestrial Television (DTT) creates more spectrum opportunity for TV white space access and regulatory agencies of many countries had begun to explore this opportunity to address spectrum scarcity. To convey the evolutionary trends in the development of TV white space technology, this paper presents a comprehensive review on the contemporary approaches to TV white space technology and practical deployments of pilot projects in Africa. The paper outlines the activities in TV white space technology, which include regulations and standardization, commercial trials, research challenges, open issues and future research directions. Furthermore, it also provides an overview of the current industrial trends in TV white space technology which demonstrates that cognitive radio as an enabling technology for TV white space technology

    Modeling and simulation of routing protocol for ad hoc networks combining queuing network analysis and ANT colony algorithms

    Get PDF
    The field of Mobile Ad hoc Networks (MANETs) has gained an important part of the interest of researchers and become very popular in last few years. MANETs can operate without fixed infrastructure and can survive rapid changes in the network topology. They can be studied formally as graphs in which the set of edges varies in time. The main method for evaluating the performance of MANETs is simulation. Our thesis presents a new adaptive and dynamic routing algorithm for MANETs inspired by the Ant Colony Optimization (ACO) algorithms in combination with network delay analysis. Ant colony optimization algorithms have all been inspired by a specific foraging behavior of ant colonies which are able to find, if not the shortest, at least a very good path connecting the colony’s nest with a source of food. Our evaluation of MANETs is based on the evaluation of the mean End-to-End delay to send a packet from source to destination node through a MANET. We evaluated the mean End-to-End delay as one of the most important performance evaluation metrics in computer networks. Finally, we evaluate our proposed ant algorithm by a comparative study with respect to one of the famous On-Demand (reactive) routing protocols called Ad hoc On-Demand Distance Vector (AODV) protocol. The evaluation shows that, the ant algorithm provides a better performance by reducing the mean End-to-End delay than the AODV algorithm. We investigated various simulation scenarios with different node density and pause times. Our new algorithm gives good results under certain conditions such as, increasing the pause time and decreasing node density. The scenarios that are applied for evaluating our routing algorithm have the following assumptions: 2-D rectangular area, no obstacles, bi-directional links, fixed number of nodes operate for the whole simulation time and nodes movements are performed according to the Random Waypoint Mobility (RWM) or the Boundless Simulation Area Mobility (BSAM) model. KEYWORDS: Ant Colony Optimization (ACO), Mobile Ad hoc Network (MANET), Queuing Network Analysis, Routing Algorithms, Mobility Models, Hybrid Simulation

    UNIVERSAL INFRASTRUCTURE OF M2M ENABLED INTER-CLOUD SERVICES FOR INTELLIGENT TRANSPORTATION SYSTEM

    Get PDF
     The objective of this study is to develop the design of a generic infrastructure for on-demand applications for intelligent transport systems (ITS) in an urban area. The main idea of the study is to allow seamless service composition and consumption, but also to allow rapid deployment of new services through the pooling of different devices and access networks that may be owned and operated by different actors such as telecom operators, transportation service operators, governmental organizations, etc. This research serves the solution for the problem of interoperability between different devices, on the fly device reconfiguration and service discovery. Â

    Development of Communication Link Perception for Decision Making in Mobile Agents

    Get PDF
    Examination and comparison of Packet Error Rate (PER), Error Burstiness (EB), and Receive Signal Strength Indicator (RSSI) as communication connectivity management metrics for multi-agent mobile robot networks are explored in this thesis. Assessment Accuracy (AA) and Time To Process (TTP) are used as parameters for the comparison of metrics given that mobile robots are required to make critical decisions rapidly. The initial investigations are done with a mobile unit making PER, EB, and RSSI measurements at an increasing distance from a base station. A relatively linear relationship between PER and EB was discovered with a R2 value of .967. Strong correlations between EB and PER were observed in areas between 0% and 50% PER. A communication aware algorithm was developed using both EB and PER to allow the mobile agent to assess the Link Quality (LQ) faster in scenarios of communication loss by scanning for error bursts

    Learning and Reasoning Strategies for User Association in Ultra-dense Small Cell Vehicular Networks

    Get PDF
    Recent vehicular ad hoc networks research has been focusing on providing intelligent transportation services by employing information and communication technologies on road transport. It has been understood that advanced demands such as reliable connectivity, high user throughput, and ultra-low latency required by these services cannot be met using traditional communication technologies. Consequently, this thesis reports on the application of artificial intelligence to user association as a technology enabler in ultra-dense small cell vehicular networks. In particular, the work focuses on mitigating mobility-related concerns and networking issues at different mobility levels by employing diverse heuristic as well as reinforcement learning (RL) methods. Firstly, driven by rapid fluctuations in the network topology and the radio environment, a conventional, three-step sequence user association policy is designed to highlight and explore the impact of vehicle speed and different performance indicators on network quality of service (QoS) and user experience. Secondly, inspired by control-theoretic models and dynamic programming, a real-time controlled feedback user association approach is proposed. The algorithm adapts to the changing vehicular environment by employing derived network performance information as a heuristic, resulting in improved network performance. Thirdly, a sequence of novel RL based user association algorithms are developed that employ variable learning rate, variable rewards function and adaptation of the control feedback framework to improve the initial and steady-state learning performance. Furthermore, to accelerate the learning process and enhance the adaptability and robustness of the developed RL algorithms, heuristically accelerated RL and case-based transfer learning methods are employed. A comprehensive, two-tier, event-based, system level simulator which is an integration of a dynamic vehicular network, a highway, and an ultra-dense small cell network is developed. The model has enabled the analysis of user mobility effects on the network performance across different mobility levels as well as served as a firm foundation for the evaluation of the empirical properties of the investigated approaches

    Chemotaxis Based Virtual Fence for Swarm Robots in Unbounded Environments

    Get PDF
    This paper presents a novel swarm robotics application of chemotaxis behaviour observed in microorganisms. This approach was used to cause exploration robots to return to a work area around the swarm’s nest within a boundless environment. We investigate the performance of our algorithm through extensive simulation studies and hardware validation. Results show that the chemotaxis approach is effective for keeping the swarm close to both stationary and moving nests. Performance comparison of these results with the unrealistic case where a boundary wall was used to keep the swarm within a target search area showed that our chemotaxis approach produced competitive results

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Get PDF
    The rising sophistication of cyber threats as well as the improvement of physical computer network properties present increasing challenges to contemporary Intrusion Detection (ID) techniques. To respond to these challenges, a multi agent system (MAS) coupled with flow-based ID techniques may effectively complement traditional ID systems. This paper develops: 1) a scalable software architecture for a new, self-organized, multi agent, flow-based ID system; and 2) a network simulation environment suitable for evaluating implementations of this MAS architecture and for other research purposes. Self-organization is achieved via 1) a reputation system that influences agent mobility in the search for effective vantage points in the network; and 2) multi objective evolutionary algorithms that seek effective operational parameter values. This paper illustrates, through quantitative and qualitative evaluation, 1) the conditions for which the reputation system provides a significant benefit; and 2) essential functionality of a complex network simulation environment supporting a broad range of malicious activity scenarios. These results establish an optimistic outlook for further research in flow-based multi agent systems for ID in computer networks
    • …
    corecore