2 research outputs found

    Supporting Quality-Of-Service of Mobile Commerce Transactions

    Get PDF
    With the deployment of 3G and 4G mobile networks, a sizable proportion of e-commerce traffic is expected to move to these networks. These transactions are likely to be diverse. Mobile transactions can include unique requirements such as atomicity (all or none steps), push or pull, security, and privacy. Because users are mobile, unpredictable link characteristics, and other problems associated with wireless networks, some mobile commerce transactions may not be completed causing significant annoyance to the users affected. Therefore, the probability of completing mobile transactions is an important parameter for measuring quality-of-service of a network supporting mobile commerce. The transaction completion probability measures the ability of networks to support completion of transactions. This research focuses on improving the support of mobile commerce transactions by the underlying wireless networks. Mobile commerce traffic is classified as messaging, information connectivity, and transactions in order to provide efficient quality-of-service to various applications. This paper introduces the use of priority, sociability and delegation to improve the transaction completion in wireless networks

    Mobile user recovery in the context of Internet transactions

    No full text
    With the expansion of Web sites to include business functions, a user interfaces with e-businesses through an interactive and multistep process, which is often time-consuming. For mobile users accessing the Web over digital cellular networks, the failure of the wireless link, a frequent occurrence, can result in the loss of work accomplished prior to the disruption. This work must then be repeated upon subsequent reconnection-often at significant cost in time and computation. This "disconnection-reconnection-repeat work" cycle may cause mobile clients to incur substantial monetary as well as resource (such as battery power) costs. In this paper, we propose a protocol for "recovering" a user to an appropriate recent interaction state after such a failure. The objective is to minimize the amount of work that needs to be redone upon restart after failure. Whereas classical database recovery focuses on recovering the system, i.e., all transactions, our work considers the problem of recovering a particular user interaction with the system. This recovery problem encompasses several interesting subproblems: 1) modeling user interaction in a way that is useful for recovery, 2) characterizing a user's "recovery state," 3) determining the state to which a user should be recovered, and 4) defining a recovery mechanism. We describe the user interaction with one or more Web sites using intuitive and familiar concepts from database transactions. We call this interaction an Internet Transaction (iTX), distinguish this notion from extant transaction models, and develop a model for it, as well as for a user's state on a Web site. Based on the twin foundations of our iTX and state models, we finally describe an effective protocol for recovering users to valid states in Internet interactions
    corecore