3 research outputs found

    A 'one-size-fits-most' walking recognition method for smartphones, smartwatches, and wearable accelerometers

    Full text link
    The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art methods quantify physical activity using 'activity counts,' a measure which overlooks specific types of physical activities. We proposed a walking recognition method for sub-second tri-axial accelerometer data, in which activity classification is based on the inherent features of walking: intensity, periodicity, and duration. We validated our method against 20 publicly available, annotated datasets on walking activity data collected at various body locations (thigh, waist, chest, arm, wrist). We demonstrated that our method can estimate walking periods with high sensitivity and specificity: average sensitivity ranged between 0.92 and 0.97 across various body locations, and average specificity for common daily activities was typically above 0.95. We also assessed the method's algorithmic fairness to demographic and anthropometric variables and measurement contexts (body location, environment). Finally, we have released our method as open-source software in MATLAB and Python.Comment: 39 pages, 4 figures (incl. 1 supplementary), and 5 tables (incl. 2 supplementary

    Mobile User Indoor-Outdoor Detection through Physical Daily Activities

    No full text
    An automatic, fast, and accurate switching method between Global Positioning System and indoor positioning systems is crucial to achieve current user positioning, which is essential information for a variety of services installed on smart devices, e.g., location-based services (LBS), healthcare monitoring components, and seamless indoor/outdoor navigation and localization (SNAL). In this study, we proposed an approach to accurately detect the indoor/outdoor environment according to six different daily activities of users including walk, skip, jog, stay, climbing stairs up and down. We select a number of features for each activity and then apply ensemble learning methods such as Random Forest, and AdaBoost to classify the environment types. Extensive model evaluations and feature analysis indicate that the system can achieve a high detection rate with good adaptation for environment recognition. Empirical evaluation of the proposed method has been verified on the HASC-2016 public dataset, and results show 99% accuracy to detect environment types. The proposed method relies only on the daily life activities data and does not need any external facilities such as the signal cell tower or Wi-Fi access points. This implies the applicability of the proposed method for the upper layer applications
    corecore