304,788 research outputs found

    When Crowdsourcing Meets Mobile Sensing: A Social Network Perspective

    Full text link
    Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.Comment: To appear in Oct. IEEE Communications Magazine, feature topic on "Social Networks Meet Next Generation Mobile Multimedia Internet

    Optimizing Wirelessly Powered Crowd Sensing: Trading energy for data

    Full text link
    To overcome the limited coverage in traditional wireless sensor networks, \emph{mobile crowd sensing} (MCS) has emerged as a new sensing paradigm. To achieve longer battery lives of user devices and incentive human involvement, this paper presents a novel approach that seamlessly integrates MCS with wireless power transfer, called \emph{wirelessly powered crowd sensing} (WPCS), for supporting crowd sensing with energy consumption and offering rewards as incentives. The optimization problem is formulated to simultaneously maximize the data utility and minimize the energy consumption for service operator, by jointly controlling wireless-power allocation at the \emph{access point} (AP) as well as sensing-data size, compression ratio, and sensor-transmission duration at \emph{mobile sensor} (MS). Given the fixed compression ratios, the optimal power allocation policy is shown to have a \emph{threshold}-based structure with respect to a defined \emph{crowd-sensing priority} function for each MS. Given fixed sensing-data utilities, the compression policy achieves the optimal compression ratio. Extensive simulations are also presented to verify the efficiency of the contributed mechanisms.Comment: arXiv admin note: text overlap with arXiv:1711.0206

    Sampling and Reconstruction of Spatial Fields using Mobile Sensors

    Get PDF
    Spatial sampling is traditionally studied in a static setting where static sensors scattered around space take measurements of the spatial field at their locations. In this paper we study the emerging paradigm of sampling and reconstructing spatial fields using sensors that move through space. We show that mobile sensing offers some unique advantages over static sensing in sensing time-invariant bandlimited spatial fields. Since a moving sensor encounters such a spatial field along its path as a time-domain signal, a time-domain anti-aliasing filter can be employed prior to sampling the signal received at the sensor. Such a filtering procedure, when used by a configuration of sensors moving at constant speeds along equispaced parallel lines, leads to a complete suppression of spatial aliasing in the direction of motion of the sensors. We analytically quantify the advantage of using such a sampling scheme over a static sampling scheme by computing the reduction in sampling noise due to the filter. We also analyze the effects of non-uniform sensor speeds on the reconstruction accuracy. Using simulation examples we demonstrate the advantages of mobile sampling over static sampling in practical problems. We extend our analysis to sampling and reconstruction schemes for monitoring time-varying bandlimited fields using mobile sensors. We demonstrate that in some situations we require a lower density of sensors when using a mobile sensing scheme instead of the conventional static sensing scheme. The exact advantage is quantified for a problem of sampling and reconstructing an audio field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised Oct 201
    corecore