304,788 research outputs found
When Crowdsourcing Meets Mobile Sensing: A Social Network Perspective
Mobile sensing is an emerging technology that utilizes agent-participatory
data for decision making or state estimation, including multimedia
applications. This article investigates the structure of mobile sensing schemes
and introduces crowdsourcing methods for mobile sensing. Inspired by social
network, one can establish trust among participatory agents to leverage the
wisdom of crowds for mobile sensing. A prototype of social network inspired
mobile multimedia and sensing application is presented for illustrative
purpose. Numerical experiments on real-world datasets show improved performance
of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect
to Internet layers are discussed.Comment: To appear in Oct. IEEE Communications Magazine, feature topic on
"Social Networks Meet Next Generation Mobile Multimedia Internet
Optimizing Wirelessly Powered Crowd Sensing: Trading energy for data
To overcome the limited coverage in traditional wireless sensor networks,
\emph{mobile crowd sensing} (MCS) has emerged as a new sensing paradigm. To
achieve longer battery lives of user devices and incentive human involvement,
this paper presents a novel approach that seamlessly integrates MCS with
wireless power transfer, called \emph{wirelessly powered crowd sensing} (WPCS),
for supporting crowd sensing with energy consumption and offering rewards as
incentives. The optimization problem is formulated to simultaneously maximize
the data utility and minimize the energy consumption for service operator, by
jointly controlling wireless-power allocation at the \emph{access point} (AP)
as well as sensing-data size, compression ratio, and sensor-transmission
duration at \emph{mobile sensor} (MS). Given the fixed compression ratios, the
optimal power allocation policy is shown to have a \emph{threshold}-based
structure with respect to a defined \emph{crowd-sensing priority} function for
each MS. Given fixed sensing-data utilities, the compression policy achieves
the optimal compression ratio. Extensive simulations are also presented to
verify the efficiency of the contributed mechanisms.Comment: arXiv admin note: text overlap with arXiv:1711.0206
Sampling and Reconstruction of Spatial Fields using Mobile Sensors
Spatial sampling is traditionally studied in a static setting where static
sensors scattered around space take measurements of the spatial field at their
locations. In this paper we study the emerging paradigm of sampling and
reconstructing spatial fields using sensors that move through space. We show
that mobile sensing offers some unique advantages over static sensing in
sensing time-invariant bandlimited spatial fields. Since a moving sensor
encounters such a spatial field along its path as a time-domain signal, a
time-domain anti-aliasing filter can be employed prior to sampling the signal
received at the sensor. Such a filtering procedure, when used by a
configuration of sensors moving at constant speeds along equispaced parallel
lines, leads to a complete suppression of spatial aliasing in the direction of
motion of the sensors. We analytically quantify the advantage of using such a
sampling scheme over a static sampling scheme by computing the reduction in
sampling noise due to the filter. We also analyze the effects of non-uniform
sensor speeds on the reconstruction accuracy. Using simulation examples we
demonstrate the advantages of mobile sampling over static sampling in practical
problems.
We extend our analysis to sampling and reconstruction schemes for monitoring
time-varying bandlimited fields using mobile sensors. We demonstrate that in
some situations we require a lower density of sensors when using a mobile
sensing scheme instead of the conventional static sensing scheme. The exact
advantage is quantified for a problem of sampling and reconstructing an audio
field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised
Oct 201
- …
