172,425 research outputs found
Development of personal area network (PAN) for mobile robot using bluetooth transceiver
The work presents the concept of providing a Personal Area Network (PAN) for microcontroller based mobile robots using Bluetooth transceiver. With the concept of replacing cable, low cost, low power consumption and communication range between 10m to 100m, Bluetooth is suitable for communication between mobile robots since most mobile robots are powered by batteries and have high mobility. The network aimed to support real-time control of up to two mobile robots from a master mobile robot through communication using Bluetooth transceiver. If a fast network radio link is implemented, a whole new world of possibilities is opened in the research of robotics control and Artificial Intelligence (AI) research works, sending real time image and information. Robots could communicate through obstacles or even through walls. Bluetooth Ad Hoc topology provides a simple communication between devices in close by forming PAN. A system contained of both hardware and software is designed to enable the robots to form a PAN and communicating, sharing information. Three microcontroller based mobile robots are built for this research work. Bluetooth Protocol Stack and mobile robot control architecture is implemented on a single microcontroller chip. The PAN enabled a few mobile robots to communicate with each other to complete a given task. The wireless communication between mobile robots is reliable based from the result of experiments carried out. Thus this is a platform for multi mobile robots system and Ad Hoc networking system. Results from experiments show that microcontroller based mobile robots can easily form a Bluetooth PAN and communicate with each other
Certified Universal Gathering in for Oblivious Mobile Robots
We present a unified formal framework for expressing mobile robots models,
protocols, and proofs, and devise a protocol design/proof methodology dedicated
to mobile robots that takes advantage of this formal framework. As a case
study, we present the first formally certified protocol for oblivious mobile
robots evolving in a two-dimensional Euclidean space. In more details, we
provide a new algorithm for the problem of universal gathering mobile oblivious
robots (that is, starting from any initial configuration that is not bivalent,
using any number of robots, the robots reach in a finite number of steps the
same position, not known beforehand) without relying on a common orientation
nor chirality. We give very strong guaranties on the correctness of our
algorithm by proving formally that it is correct, using the COQ proof
assistant. This result demonstrates both the effectiveness of the approach to
obtain new algorithms that use as few assumptions as necessary, and its
manageability since the amount of developed code remains human readable.Comment: arXiv admin note: substantial text overlap with arXiv:1506.0160
A Framework for Interactive Teaching of Virtual Borders to Mobile Robots
The increasing number of robots in home environments leads to an emerging
coexistence between humans and robots. Robots undertake common tasks and
support the residents in their everyday life. People appreciate the presence of
robots in their environment as long as they keep the control over them. One
important aspect is the control of a robot's workspace. Therefore, we introduce
virtual borders to precisely and flexibly define the workspace of mobile
robots. First, we propose a novel framework that allows a person to
interactively restrict a mobile robot's workspace. To show the validity of this
framework, a concrete implementation based on visual markers is implemented.
Afterwards, the mobile robot is capable of performing its tasks while
respecting the new virtual borders. The approach is accurate, flexible and less
time consuming than explicit robot programming. Hence, even non-experts are
able to teach virtual borders to their robots which is especially interesting
in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure
Socially Constrained Management Of Power Resources For Social Mobile Robots
Autonomous robots acting as companions or assistants in real social environments should be able to sustain and operate over an extended period of time. Generally, autonomous mobile robots draw power from batteries to operate various sensors, actuators and perform tasks. Batteries have a limited power life and take a long time to recharge via a power source, which may impede human-robot interaction and task performance. Thus, it is important for social robots to manage their energy, this paper discusses an approach to manage power resources on mobile robot with regard to social aspects for creating life-like autonomous social robots
Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace
- …
