4,308,168 research outputs found
Multiplicative order convergence in -algebras
A net in an -algebra is said to be multiplicative order
convergent to if \x_\alpha-x\u\oc 0 for all . In this
paper, we introduce the notions -convergence, -Cauchy, -complete,
-continuous and -KB-space. Moreover, we study the basic properties of
these notions.Comment:
Influence of temperature on the magnetic oscillations in graphene with spin splitting: a new approach
We analyze the magnetic oscillations (MO) in pristine graphene, under a
perpendicular magnetic field, taking into account the Zeeman effect. We
consider a constant Fermi energy, such that the valence band is always full and
only the conduction band is available. At zero temperature the MO consist of
two sawtooth peaks, one for each spin. Both peaks have the same frequency, but
different amplitude and phase. We show that, in order to observe the spin
splitting in the MO, Fermi energy of about 0.1 eV is required. At low
temperatures we obtain that the MO can be expressed as the MO at zero
temperature, plus small Fermi-Dirac like functions, each centered around the MO
peaks. Using this expression, we show that the spin splitting is observable in
the MO only when the thermal energy is smaller than the Zeeman energy. We also
analyze the shift of the MO extrema as the temperature increases. We show that
it depends on the magnetic field, which implies a broken periodicity at nonzero
temperature. Finally, we obtain an analytical expression for the MO envelope.Comment: 22 pages, 9 figures. Published versio
‘User-friendly’ primary phosphines and an arsine: synthesis and characterization of new air-stable ligands incorporating the ferrocenyl group
Reaction of FcCH₂CH₂P(O)(OH)₂ or FcCH₂P(O)(OH)(OEt) [Fc=Fe(η⁵-C₅H₄)(η⁵-C₅H₅)] with excess CH₂N₂ followed by reduction with Me₃SiCl–LiAlH₄ gives the air-stable primary phosphines FcCH₂CH₂PH₂ and the previously reported analogue FcCH₂PH₂ in high yields. Reduction of 1,1′-Fc′[CH₂P(O)(OEt)₂] [Fc′=Fe(η⁵-C₅H₄)₂] and 1,2-Fc″[CH₂P(O)(OEt)₂] [Fc″=Fe(η⁵-C₅H₅)(η⁵-C₅H₃)] similarly gives the new primary phosphines 1,1′-Fc′(CH₂PH₂)₂ and 1,2-Fc″(CH₂PH₂)₂, respectively. The arsine FcCH₂CH₂AsH₂, which is also air-stable, has been prepared by reduction of the arsonic acid FcCH₂CH₂As(O)(OH)₂ using Zn/HCl. An X-ray structure has been carried out on the arsine, which is only the second structure determination of a free primary arsine. The molybdenum carbonyl complex [1,2-Fc″(CH₂PH₂)₂Mo(CO)₄] was prepared by reaction of the phosphine with [Mo(CO)₄(pip)₂] (pip=piperidine), and characterized by a preliminary X-ray structure determination. However, the same reaction of 1,1′-Fc′(CH₂PH₂)₂with [Mo(CO)₄(pip)₂] gave [1,1′-Fc′(CH₂PH₂)₂Mo(CO)₄] and the dimer [1,1′-Fc′(CH₂PH₂)₂Mo(CO)₄]₂, characterized by electrospray mass spectrometry. 1,1′-Fc′[CH₂PH₂Mo(CO)₅]₂ and 1,2-Fc″[CH₂PH₂Mo(CO)₅]₂ were likewise prepared from the phosphines and excess [Mo(CO)₅(THF)]
Fast Reachable Set Approximations via State Decoupling Disturbances
With the recent surge of interest in using robotics and automation for civil
purposes, providing safety and performance guarantees has become extremely
important. In the past, differential games have been successfully used for the
analysis of safety-critical systems. In particular, the Hamilton-Jacobi (HJ)
formulation of differential games provides a flexible way to compute the
reachable set, which can characterize the set of states which lead to either
desirable or undesirable configurations, depending on the application. While HJ
reachability is applicable to many small practical systems, the curse of
dimensionality prevents the direct application of HJ reachability to many
larger systems. To address computation complexity issues, various efficient
computation methods in the literature have been developed for approximating or
exactly computing the solution to HJ partial differential equations, but only
when the system dynamics are of specific forms. In this paper, we propose a
flexible method to trade off optimality with computation complexity in HJ
reachability analysis. To achieve this, we propose to simplify system dynamics
by treating state variables as disturbances. We prove that the resulting
approximation is conservative in the desired direction, and demonstrate our
method using a four-dimensional plane model.Comment: in Proceedings of the IEE Conference on Decision and Control, 201
Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited
We present neutral hydrogen, ultraviolet, optical and near-infrared imaging,
and optical spectroscopy, of Minkowski's Object (MO), a star forming peculiar
galaxy near NGC 541. The observations strengthen evidence that star formation
in MO was triggered by the radio jet from NGC 541. Key new results are the
discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet
downstream from MO, where the jet changes direction and decollimates; strong
detections of MO, also showing double structure, in UV and H-alpha; and
numerous HII regions and associated clusters in MO. In UV, MO resembles the
radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies
(HzRGs), also thought to be caused by jet-induced star formation. MO's stellar
population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst,
with current star formation rate 0.52 solar masses per year (concentrated
upstream from where the HI column density is high). This is unlike the
jet-induced star formation in Centaurus A, where the jet interacts with
pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy
intergalactic or interstellar medium as a result of jet interaction, followed
by collapse of the cooling clouds and subsequent star formation (consistent
with numerical simulations). Since the radio source that triggered star
formation in MO is much less luminous, and therefore more common, than powerful
HzRGs, and because the environment around MO is not particularly special in
terms of abundant dense, cold gas, jet-induced star formation in the early
universe might be even more prevalent than previously thought.Comment: 52 pages, 15 figures, accepted for publication in Ap
Concentration dependence of thermal isomerization process of methyl orange in ethanol
The thermal isomerization (TI) rates of methyl orange (MO) and 4-dimethylaminoazobenzene (DMAAB) in ethanol (EtOH) are measured. Usually TI rates of azobenzene dyes are known to be concentration independent. However, the TI rate of MO showed a concentration dependence whereas that of DMAAB did not. The TI rate of DMAAB in EtOH became larger by the addition of alkali halide. This phenomenon is caused mainly by the interaction between DMAAB and cation. MO is a derivative of DMAAB in which one end of the azobenzene is substituted by a SO3-Na+ group. The interaction with the dissociated Na+ ion is considered to be an origin of the concentration dependence of the TI rate of MO
A Utility Proportional Fairness Radio Resource Block Allocation in Cellular Networks
This paper presents a radio resource block allocation optimization problem
for cellular communications systems with users running delay-tolerant and
real-time applications, generating elastic and inelastic traffic on the network
and being modelled as logarithmic and sigmoidal utilities respectively. The
optimization is cast under a utility proportional fairness framework aiming at
maximizing the cellular systems utility whilst allocating users the resource
blocks with an eye on application quality of service requirements and on the
procedural temporal and computational efficiency. Ultimately, the sensitivity
of the proposed modus operandi to the resource variations is investigated
- …
