21,581 research outputs found
Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module
Thanks to the wide availability of bandwidth, the millimeter wave (mmWave)
frequencies will provide very high data rates to mobile users in next
generation 5G cellular networks. However, mmWave links suffer from high
isotropic pathloss and blockage from common materials, and are subject to an
intermittent channel quality. Therefore, protocols and solutions at different
layers in the cellular network and the TCP/IP protocol stack have been proposed
and studied. A valuable tool for the end-to-end performance analysis of mmWave
cellular networks is the ns-3 mmWave module, which already models in detail the
channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the
Long Term Evolution (LTE) stack for the higher layers. In this paper we present
an implementation for the ns-3 mmWave module of multi connectivity techniques
for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA)
and Dual Connectivity (DC), and discuss how they can be integrated to increase
the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201
Spatially Sparse Precoding in Millimeter Wave MIMO Systems
Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss
than the microwave signals currently used in most wireless applications. MmWave
systems must therefore leverage large antenna arrays, made possible by the
decrease in wavelength, to combat pathloss with beamforming gain. Beamforming
with multiple data streams, known as precoding, can be used to further improve
mmWave spectral efficiency. Both beamforming and precoding are done digitally
at baseband in traditional multi-antenna systems. The high cost and power
consumption of mixed-signal devices in mmWave systems, however, make analog
processing in the RF domain more attractive. This hardware limitation restricts
the feasible set of precoders and combiners that can be applied by practical
mmWave transceivers. In this paper, we consider transmit precoding and receiver
combining in mmWave systems with large antenna arrays. We exploit the spatial
structure of mmWave channels to formulate the precoding/combining problem as a
sparse reconstruction problem. Using the principle of basis pursuit, we develop
algorithms that accurately approximate optimal unconstrained precoders and
combiners such that they can be implemented in low-cost RF hardware. We present
numerical results on the performance of the proposed algorithms and show that
they allow mmWave systems to approach their unconstrained performance limits,
even when transceiver hardware constraints are considered.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless
Communication
Wireless Powered Dense Cellular Networks: How Many Small Cells Do We Need?
This paper focuses on wireless powered 5G dense cellular networks, where base
station (BS) delivers energy to user equipment (UE) via the microwave radiation
in sub-6 GHz or millimeter wave (mmWave) frequency, and UE uses the harvested
energy for uplink information transmission. By addressing the impacts of
employing different number of antennas and bandwidths at lower and higher
frequencies, we evaluate the amount of harvested energy and throughput in such
networks. Based on the derived results, we obtain the required small cell
density to achieve an expected level of harvested energy or throughput. Also,
we obtain that when the ratio of the number of sub-6 GHz BSs to that of the
mmWave BSs is lower than a given threshold, UE harvests more energy from a
mmWave BS than a sub-6 GHz BS. We find how many mmWave small cells are needed
to perform better than the sub-6 GHz small cells from the perspectives of
harvested energy and throughput. Our results reveal that the amount of
harvested energy from the mmWave tier can be comparable to the sub-6 GHz
counterpart in the dense scenarios. For the same tier scale, mmWave tier can
achieve higher throughput. Furthermore, the throughput gap between different
mmWave frequencies increases with the mmWave BS density.Comment: pages 1-14, accepted by IEEE Journal on Selected Areas in
Communication
Channel Estimation for Millimeter-Wave Massive MIMO with Hybrid Precoding over Frequency-Selective Fading Channels
Channel estimation for millimeter-wave (mmWave) massive MIMO with hybrid
precoding is challenging, since the number of radio frequency (RF) chains is
usually much smaller than that of antennas. To date, several channel estimation
schemes have been proposed for mmWave massive MIMO over narrow-band channels,
while practical mmWave channels exhibit the frequency-selective fading (FSF).
To this end, this letter proposes a multi-user uplink channel estimation scheme
for mmWave massive MIMO over FSF channels. Specifically, by exploiting the
angle-domain structured sparsity of mmWave FSF channels, a distributed
compressive sensing (DCS)-based channel estimation scheme is proposed.
Moreover, by using the grid matching pursuit strategy with adaptive measurement
matrix, the proposed algorithm can solve the power leakage problem caused by
the continuous angles of arrival or departure (AoA/AoD). Simulation results
verify that the good performance of the proposed solution.Comment: 4 pages, 3 figures, accepted by IEEE Communications Letters. This
paper may be the first one that investigates the frequency selective fading
channel estimation for mmWave massive MIMO systems with hybrid precoding. Key
words: Millimeter-wave (mmWave) massive MIMO, frequency-selective fading,
channel estimation, compressive sensing, hybrid precodin
Beam Management for Millimeter Wave Beamspace MU-MIMO Systems
Millimeter wave (mmWave) communication has attracted increasing attention as
a promising technology for 5G networks. One of the key architectural features
of mmWave is the use of massive antenna arrays at both the transmitter and the
receiver sides. Therefore, by employing directional beamforming (BF), both
mmWave base stations (MBSs) and mmWave users (MUEs) are capable of supporting
multi-beam simultaneous transmissions. However, most researches have only
considered a single beam, which means that they do not make full potential of
mmWave. In this context, in order to improve the performance of short-range
indoor mmWave networks with multiple reflections, we investigate the challenges
and potential solutions of downlink multi-user multi-beam transmission, which
can be described as a high-dimensional (i.e., beamspace) multi-user
multiple-input multiple-output (MU-MIMO) technique, including multi-user BF
training, simultaneous users' grouping, and multi-user multibeam power
allocation. Furthermore, we present the theoretical and numerical results to
demonstrate that beamspace MU-MIMO compared with single beam transmission can
largely improve the rate performance of mmWave systems.Comment: The sixth IEEE/CIC International Conference on Communications in
China (ICCC2017
Millimeter Wave Communications with Reconfigurable Antennas
The highly sparse nature of propagation channels and the restricted use of
radio frequency (RF) chains at transceivers limit the performance of millimeter
wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing
reconfigurable antennas to mmWave can offer an additional degree of freedom on
designing mmWave MIMO systems. This paper provides a theoretical framework for
studying the mmWave MIMO with reconfigurable antennas. We present an
architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital
beamformers and reconfigurable antennas at both the transmitter and the
receiver. We show that employing reconfigurable antennas can provide throughput
gain for the mmWave MIMO. We derive the expression for the average throughput
gain of using reconfigurable antennas, and further simplify the expression by
considering the case of large number of reconfiguration states. In addition, we
propose a low-complexity algorithm for the reconfiguration state and beam
selection, which achieves nearly the same throughput performance as the optimal
selection of reconfiguration state and beams by exhaustive search.Comment: presented at IEEE ICC 201
Secure Communications in Millimeter Wave Ad Hoc Networks
Wireless networks with directional antennas, like millimeter wave (mmWave)
networks, have enhanced security. For a large-scale mmWave ad hoc network in
which eavesdroppers are randomly located, however, eavesdroppers can still
intercept the confidential messages, since they may reside in the signal beam.
This paper explores the potential of physical layer security in mmWave ad hoc
networks. Specifically, we characterize the impact of mmWave channel
characteristics, random blockages, and antenna gains on the secrecy
performance. For the special case of uniform linear array (ULA), a tractable
approach is proposed to evaluate the average achievable secrecy rate. We also
characterize the impact of artificial noise in such networks. Our results
reveal that in the low transmit powerregime, the use of low mmWave frequency
achieves better secrecy performance, and when increasing transmit power, a
transition from low mmWave frequency to high mmWave frequency is demanded for
obtaining a higher secrecy rate. More antennas at the transmitting nodes are
needed to decrease the antenna gain obtained by the eavesdroppers when using
ULA. Eavesdroppers can intercept more information by using a wide beam pattern.
Furthermore, the use of artificial noise may be ineffective for enhancing the
secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication
Channel Estimation for mmWave Massive MIMO Based Access and Backhaul in Ultra-Dense Network
Millimeter-wave (mmWave) massive MIMO used for access and backhaul in
ultra-dense network (UDN) has been considered as the promising 5G technique. We
consider such an heterogeneous network (HetNet) that ultra-dense small base
stations (BSs) exploit mmWave massive MIMO for access and backhaul, while
macrocell BS provides the control service with low frequency band. However, the
channel estimation for mmWave massive MIMO can be challenging, since the pilot
overhead to acquire the channels associated with a large number of antennas in
mmWave massive MIMO can be prohibitively high. This paper proposes a structured
compressive sensing (SCS)-based channel estimation scheme, where the angular
sparsity of mmWave channels is exploited to reduce the required pilot overhead.
Specifically, since the path loss for non-line-of-sight paths is much larger
than that for line-of-sight paths, the mmWave massive channels in the angular
domain appear the obvious sparsity. By exploiting such sparsity, the required
pilot overhead only depends on the small number of dominated multipath.
Moreover, the sparsity within the system bandwidth is almost unchanged, which
can be exploited for the further improved performance. Simulation results
demonstrate that the proposed scheme outperforms its counterpart, and it can
approach the performance bound.Comment: 6 pages, 5 figures. Millimeter-wave (mmWave), mmWave massive MIMO,
compressive sensing (CS), hybrid precoding, channel estimation, access,
backhaul, ultra-dense network (UDN), heterogeneous network (HetNet). arXiv
admin note: substantial text overlap with arXiv:1604.03695, IEEE
International Conference on Communications (ICC'16), May 2016, Kuala Lumpur,
Malaysi
- …
