31 research outputs found

    A Novel Document Generation Process for Topic Detection based on Hierarchical Latent Tree Models

    Full text link
    We propose a novel document generation process based on hierarchical latent tree models (HLTMs) learned from data. An HLTM has a layer of observed word variables at the bottom and multiple layers of latent variables on top. For each document, we first sample values for the latent variables layer by layer via logic sampling, then draw relative frequencies for the words conditioned on the values of the latent variables, and finally generate words for the document using the relative word frequencies. The motivation for the work is to take word counts into consideration with HLTMs. In comparison with LDA-based hierarchical document generation processes, the new process achieves drastically better model fit with much fewer parameters. It also yields more meaningful topics and topic hierarchies. It is the new state-of-the-art for the hierarchical topic detection

    Novelty Detection in Sequential Data by Informed Clustering and Modeling

    Full text link
    Novelty detection in discrete sequences is a challenging task, since deviations from the process generating the normal data are often small or intentionally hidden. Novelties can be detected by modeling normal sequences and measuring the deviations of a new sequence from the model predictions. However, in many applications data is generated by several distinct processes so that models trained on all the data tend to over-generalize and novelties remain undetected. We propose to approach this challenge through decomposition: by clustering the data we break down the problem, obtaining simpler modeling task in each cluster which can be modeled more accurately. However, this comes at a trade-off, since the amount of training data per cluster is reduced. This is a particular problem for discrete sequences where state-of-the-art models are data-hungry. The success of this approach thus depends on the quality of the clustering, i.e., whether the individual learning problems are sufficiently simpler than the joint problem. While clustering discrete sequences automatically is a challenging and domain-specific task, it is often easy for human domain experts, given the right tools. In this paper, we adapt a state-of-the-art visual analytics tool for discrete sequence clustering to obtain informed clusters from domain experts and use LSTMs to model each cluster individually. Our extensive empirical evaluation indicates that this informed clustering outperforms automatic ones and that our approach outperforms state-of-the-art novelty detection methods for discrete sequences in three real-world application scenarios. In particular, decomposition outperforms a global model despite less training data on each individual cluster
    corecore