1,001,725 research outputs found

    Multidimensional Membership Mixture Models

    Full text link
    We present the multidimensional membership mixture (M3) models where every dimension of the membership represents an independent mixture model and each data point is generated from the selected mixture components jointly. This is helpful when the data has a certain shared structure. For example, three unique means and three unique variances can effectively form a Gaussian mixture model with nine components, while requiring only six parameters to fully describe it. In this paper, we present three instantiations of M3 models (together with the learning and inference algorithms): infinite, finite, and hybrid, depending on whether the number of mixtures is fixed or not. They are built upon Dirichlet process mixture models, latent Dirichlet allocation, and a combination respectively. We then consider two applications: topic modeling and learning 3D object arrangements. Our experiments show that our M3 models achieve better performance using fewer topics than many classic topic models. We also observe that topics from the different dimensions of M3 models are meaningful and orthogonal to each other.Comment: 9 pages, 7 figure

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure

    Adaptive Seeding for Gaussian Mixture Models

    Full text link
    We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known KK-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original KK-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016. The final publication is available at link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2 24

    Testing for Homogeneity in Mixture Models

    Full text link
    Statistical models of unobserved heterogeneity are typically formalized as mixtures of simple parametric models and interest naturally focuses on testing for homogeneity versus general mixture alternatives. Many tests of this type can be interpreted as C(α)C(\alpha) tests, as in Neyman (1959), and shown to be locally, asymptotically optimal. These C(α)C(\alpha) tests will be contrasted with a new approach to likelihood ratio testing for general mixture models. The latter tests are based on estimation of general nonparametric mixing distribution with the Kiefer and Wolfowitz (1956) maximum likelihood estimator. Recent developments in convex optimization have dramatically improved upon earlier EM methods for computation of these estimators, and recent results on the large sample behavior of likelihood ratios involving such estimators yield a tractable form of asymptotic inference. Improvement in computation efficiency also facilitates the use of a bootstrap methods to determine critical values that are shown to work better than the asymptotic critical values in finite samples. Consistency of the bootstrap procedure is also formally established. We compare performance of the two approaches identifying circumstances in which each is preferred

    Identifiability of Large Phylogenetic Mixture Models

    Full text link
    Phylogenetic mixture models are statistical models of character evolution allowing for heterogeneity. Each of the classes in some unknown partition of the characters may evolve by different processes, or even along different trees. The fundamental question of whether parameters of such a model are identifiable is difficult to address, due to the complexity of the parameterization. We analyze mixture models on large trees, with many mixture components, showing that both numerical and tree parameters are indeed identifiable in these models when all trees are the same. We also explore the extent to which our algebraic techniques can be employed to extend the result to mixtures on different trees.Comment: 15 page
    • …
    corecore