9 research outputs found

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms

    Evaluations on underdetermined blind source separation in adverse environments using time-frequency masking

    Get PDF
    The successful implementation of speech processing systems in the real world depends on its ability to handle adverse acoustic conditions with undesirable factors such as room reverberation and background noise. In this study, an extension to the established multiple sensors degenerate unmixing estimation technique (MENUET) algorithm for blind source separation is proposed based on the fuzzy c-means clustering to yield improvements in separation ability for underdetermined situations using a nonlinear microphone array. However, rather than test the blind source separation ability solely on reverberant conditions, this paper extends this to include a variety of simulated and real-world noisy environments. Results reported encouraging separation ability and improved perceptual quality of the separated sources for such adverse conditions. Not only does this establish this proposed methodology as a credible improvement to the system, but also implies further applicability in areas such as noise suppression in adverse acoustic environments

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    Mixing Matrix Estimation of Underdetermined Blind Source Separation Based on Data Field and Improved FCM Clustering

    No full text
    In modern electronic warfare, multiple input multiple output (MIMO) radar has become an important tool for electronic reconnaissance and intelligence transmission because of its anti-stealth, high resolution, low intercept and anti-destruction characteristics. As a common MIMO radar signal, discrete frequency coding waveform (DFCW) has a serious overlap of both time and frequency, so it cannot be directly used in the current radar signal separation problems. The existing fuzzy clustering algorithms have problems in initial value selection, low convergence rate and local extreme values which will lead to the low accuracy of the mixing matrix estimation. Consequently, a novel mixing matrix estimation algorithm based on data field and improved fuzzy C-means (FCM) clustering is proposed. First of all, the sparsity and linear clustering characteristics of the time–frequency domain MIMO radar signals are enhanced by using the single-source principal value of complex angular detection. Secondly, the data field uses the potential energy information to analyze the particle distribution, thus design a new clustering number selection scheme. Then the particle swarm optimization algorithm is introduced to improve the iterative clustering process of FCM, and finally get the estimated value of the mixing matrix. The simulation results show that the proposed algorithm improves both the estimation accuracy and the robustness of the mixing matrix

    Mixing Matrix Estimation of Underdetermined Blind Source Separation Based on Data Field and Improved FCM Clustering

    No full text
    In modern electronic warfare, multiple input multiple output (MIMO) radar has become an important tool for electronic reconnaissance and intelligence transmission because of its anti-stealth, high resolution, low intercept and anti-destruction characteristics. As a common MIMO radar signal, discrete frequency coding waveform (DFCW) has a serious overlap of both time and frequency, so it cannot be directly used in the current radar signal separation problems. The existing fuzzy clustering algorithms have problems in initial value selection, low convergence rate and local extreme values which will lead to the low accuracy of the mixing matrix estimation. Consequently, a novel mixing matrix estimation algorithm based on data field and improved fuzzy C-means (FCM) clustering is proposed. First of all, the sparsity and linear clustering characteristics of the time–frequency domain MIMO radar signals are enhanced by using the single-source principal value of complex angular detection. Secondly, the data field uses the potential energy information to analyze the particle distribution, thus design a new clustering number selection scheme. Then the particle swarm optimization algorithm is introduced to improve the iterative clustering process of FCM, and finally get the estimated value of the mixing matrix. The simulation results show that the proposed algorithm improves both the estimation accuracy and the robustness of the mixing matrix

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore