145,540 research outputs found
Mixed-integer Quadratic Programming is in NP
Mixed-integer quadratic programming is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are
restricted to be integral. In this paper, we prove that the decision version of
mixed-integer quadratic programming is in NP, thereby showing that it is
NP-complete. This is established by showing that if the decision version of
mixed-integer quadratic programming is feasible, then there exists a solution
of polynomial size. This result generalizes and unifies classical results that
quadratic programming is in NP and integer linear programming is in NP
Mixed integer predictive control and shortest path reformulation
Mixed integer predictive control deals with optimizing integer and real
control variables over a receding horizon. The mixed integer nature of controls
might be a cause of intractability for instances of larger dimensions. To
tackle this little issue, we propose a decomposition method which turns the
original -dimensional problem into indipendent scalar problems of lot
sizing form. Each scalar problem is then reformulated as a shortest path one
and solved through linear programming over a receding horizon. This last
reformulation step mirrors a standard procedure in mixed integer programming.
The approximation introduced by the decomposition can be lowered if we operate
in accordance with the predictive control technique: i) optimize controls over
the horizon ii) apply the first control iii) provide measurement updates of
other states and repeat the procedure
Extended Formulations in Mixed-integer Convex Programming
We present a unifying framework for generating extended formulations for the
polyhedral outer approximations used in algorithms for mixed-integer convex
programming (MICP). Extended formulations lead to fewer iterations of outer
approximation algorithms and generally faster solution times. First, we observe
that all MICP instances from the MINLPLIB2 benchmark library are conic
representable with standard symmetric and nonsymmetric cones. Conic
reformulations are shown to be effective extended formulations themselves
because they encode separability structure. For mixed-integer
conic-representable problems, we provide the first outer approximation
algorithm with finite-time convergence guarantees, opening a path for the use
of conic solvers for continuous relaxations. We then connect the popular
modeling framework of disciplined convex programming (DCP) to the existence of
extended formulations independent of conic representability. We present
evidence that our approach can yield significant gains in practice, with the
solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201
Robust state estimation using mixed integer programming
This letter describes a robust state estimator based on the solution of a mixed integer program. A tolerance range is associated with each measurement and an estimate is chosen to maximize the number of estimated measurements that remain within tolerance (or equivalently minimize the number of measurements out of tolerance). Some small-scale examples are given which suggest that this approach is robust in the presence of gross errors, is not susceptible to leverage points, and can solve some pathological cases that have previously caused problems for robust estimation algorithms
- …
