145,540 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    Mixed integer predictive control and shortest path reformulation

    Get PDF
    Mixed integer predictive control deals with optimizing integer and real control variables over a receding horizon. The mixed integer nature of controls might be a cause of intractability for instances of larger dimensions. To tackle this little issue, we propose a decomposition method which turns the original nn-dimensional problem into nn indipendent scalar problems of lot sizing form. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon. This last reformulation step mirrors a standard procedure in mixed integer programming. The approximation introduced by the decomposition can be lowered if we operate in accordance with the predictive control technique: i) optimize controls over the horizon ii) apply the first control iii) provide measurement updates of other states and repeat the procedure

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201

    Robust state estimation using mixed integer programming

    Get PDF
    This letter describes a robust state estimator based on the solution of a mixed integer program. A tolerance range is associated with each measurement and an estimate is chosen to maximize the number of estimated measurements that remain within tolerance (or equivalently minimize the number of measurements out of tolerance). Some small-scale examples are given which suggest that this approach is robust in the presence of gross errors, is not susceptible to leverage points, and can solve some pathological cases that have previously caused problems for robust estimation algorithms
    corecore