93,423 research outputs found

    Mixed-integer convex representability

    Get PDF
    Motivated by recent advances in solution methods for mixed-integer convex optimization (MICP), we study the fundamental and open question of which sets can be represented exactly as feasible regions of MICP problems. We establish several results in this direction, including the first complete characterization for the mixed-binary case and a simple necessary condition for the general case. We use the latter to derive the first non-representability results for various non-convex sets such as the set of rank-1 matrices and the set of prime numbers. Finally, in correspondence with the seminal work on mixed-integer linear representability by Jeroslow and Lowe, we study the representability question under rationality assumptions. Under these rationality assumptions, we establish that representable sets obey strong regularity properties such as periodicity, and we provide a complete characterization of representable subsets of the natural numbers and of representable compact sets. Interestingly, in the case of subsets of natural numbers, our results provide a clear separation between the mathematical modeling power of mixed-integer linear and mixed-integer convex optimization. In the case of compact sets, our results imply that using unbounded integer variables is necessary only for modeling unbounded sets

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Mixed integer predictive control and shortest path reformulation

    Get PDF
    Mixed integer predictive control deals with optimizing integer and real control variables over a receding horizon. The mixed integer nature of controls might be a cause of intractability for instances of larger dimensions. To tackle this little issue, we propose a decomposition method which turns the original nn-dimensional problem into nn indipendent scalar problems of lot sizing form. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon. This last reformulation step mirrors a standard procedure in mixed integer programming. The approximation introduced by the decomposition can be lowered if we operate in accordance with the predictive control technique: i) optimize controls over the horizon ii) apply the first control iii) provide measurement updates of other states and repeat the procedure

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201

    Note on the Complexity of the Mixed-Integer Hull of a Polyhedron

    Get PDF
    We study the complexity of computing the mixed-integer hull conv(PZn×Rd)\operatorname{conv}(P\cap\mathbb{Z}^n\times\mathbb{R}^d) of a polyhedron PP. Given an inequality description, with one integer variable, the mixed-integer hull can have exponentially many vertices and facets in dd. For n,dn,d fixed, we give an algorithm to find the mixed integer hull in polynomial time. Given P=conv(V)P=\operatorname{conv}(V) and nn fixed, we compute a vertex description of the mixed-integer hull in polynomial time and give bounds on the number of vertices of the mixed integer hull
    corecore