93,423 research outputs found
Mixed-integer convex representability
Motivated by recent advances in solution methods for mixed-integer convex
optimization (MICP), we study the fundamental and open question of which sets
can be represented exactly as feasible regions of MICP problems. We establish
several results in this direction, including the first complete
characterization for the mixed-binary case and a simple necessary condition for
the general case. We use the latter to derive the first non-representability
results for various non-convex sets such as the set of rank-1 matrices and the
set of prime numbers. Finally, in correspondence with the seminal work on
mixed-integer linear representability by Jeroslow and Lowe, we study the
representability question under rationality assumptions. Under these
rationality assumptions, we establish that representable sets obey strong
regularity properties such as periodicity, and we provide a complete
characterization of representable subsets of the natural numbers and of
representable compact sets. Interestingly, in the case of subsets of natural
numbers, our results provide a clear separation between the mathematical
modeling power of mixed-integer linear and mixed-integer convex optimization.
In the case of compact sets, our results imply that using unbounded integer
variables is necessary only for modeling unbounded sets
Mixed-integer Quadratic Programming is in NP
Mixed-integer quadratic programming is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are
restricted to be integral. In this paper, we prove that the decision version of
mixed-integer quadratic programming is in NP, thereby showing that it is
NP-complete. This is established by showing that if the decision version of
mixed-integer quadratic programming is feasible, then there exists a solution
of polynomial size. This result generalizes and unifies classical results that
quadratic programming is in NP and integer linear programming is in NP
Recommended from our members
A Framework for Globally Optimizing Mixed-Integer Signomial Programs
Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers. © 2013 Springer Science+Business Media New York
Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting
Mixed-integer mathematical programs are among the most commonly used models
for a wide set of problems in Operations Research and related fields. However,
there is still very little known about what can be expressed by small
mixed-integer programs. In particular, prior to this work, it was open whether
some classical problems, like the minimum odd-cut problem, can be expressed by
a compact mixed-integer program with few (even constantly many) integer
variables. This is in stark contrast to linear formulations, where recent
breakthroughs in the field of extended formulations have shown that many
polytopes associated to classical combinatorial optimization problems do not
even admit approximate extended formulations of sub-exponential size.
We provide a general framework for lifting inapproximability results of
extended formulations to the setting of mixed-integer extended formulations,
and obtain almost tight lower bounds on the number of integer variables needed
to describe a variety of classical combinatorial optimization problems. Among
the implications we obtain, we show that any mixed-integer extended formulation
of sub-exponential size for the matching polytope, cut polytope, traveling
salesman polytope or dominant of the odd-cut polytope, needs many integer variables, where is the number of vertices of the
underlying graph. Conversely, the above-mentioned polyhedra admit
polynomial-size mixed-integer formulations with only or (for the traveling salesman polytope) many integer variables.
Our results build upon a new decomposition technique that, for any convex set
, allows for approximating any mixed-integer description of by the
intersection of with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft
On the complexity of nonlinear mixed-integer optimization
This is a survey on the computational complexity of nonlinear mixed-integer
optimization. It highlights a selection of important topics, ranging from
incomputability results that arise from number theory and logic, to recently
obtained fully polynomial time approximation schemes in fixed dimension, and to
strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear
Optimization, IMA Volumes, Springer-Verla
Mixed integer predictive control and shortest path reformulation
Mixed integer predictive control deals with optimizing integer and real
control variables over a receding horizon. The mixed integer nature of controls
might be a cause of intractability for instances of larger dimensions. To
tackle this little issue, we propose a decomposition method which turns the
original -dimensional problem into indipendent scalar problems of lot
sizing form. Each scalar problem is then reformulated as a shortest path one
and solved through linear programming over a receding horizon. This last
reformulation step mirrors a standard procedure in mixed integer programming.
The approximation introduced by the decomposition can be lowered if we operate
in accordance with the predictive control technique: i) optimize controls over
the horizon ii) apply the first control iii) provide measurement updates of
other states and repeat the procedure
Extended Formulations in Mixed-integer Convex Programming
We present a unifying framework for generating extended formulations for the
polyhedral outer approximations used in algorithms for mixed-integer convex
programming (MICP). Extended formulations lead to fewer iterations of outer
approximation algorithms and generally faster solution times. First, we observe
that all MICP instances from the MINLPLIB2 benchmark library are conic
representable with standard symmetric and nonsymmetric cones. Conic
reformulations are shown to be effective extended formulations themselves
because they encode separability structure. For mixed-integer
conic-representable problems, we provide the first outer approximation
algorithm with finite-time convergence guarantees, opening a path for the use
of conic solvers for continuous relaxations. We then connect the popular
modeling framework of disciplined convex programming (DCP) to the existence of
extended formulations independent of conic representability. We present
evidence that our approach can yield significant gains in practice, with the
solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201
Note on the Complexity of the Mixed-Integer Hull of a Polyhedron
We study the complexity of computing the mixed-integer hull
of a polyhedron .
Given an inequality description, with one integer variable, the mixed-integer
hull can have exponentially many vertices and facets in . For fixed,
we give an algorithm to find the mixed integer hull in polynomial time. Given
and fixed, we compute a vertex description of
the mixed-integer hull in polynomial time and give bounds on the number of
vertices of the mixed integer hull
- …
