13,279 research outputs found

    NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results

    Full text link
    This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark. This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+. This challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer-pattern rawRGB and (2) the standard RGB (sRGB) color spaces. Each track ~250 registered participants. A total of 22 teams, proposing 24 methods, competed in the final phase of the challenge. The proposed methods by the participating teams represent the current state-of-the-art performance in image denoising targeting real noisy images. The newly collected SIDD+ datasets are publicly available at: https://bit.ly/siddplus_data

    NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image

    Full text link
    This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image

    Triple Attention Mixed Link Network for Single Image Super Resolution

    Full text link
    Single image super resolution is of great importance as a low-level computer vision task. Recent approaches with deep convolutional neural networks have achieved im-pressive performance. However, existing architectures have limitations due to the less sophisticated structure along with less strong representational power. In this work, to significantly enhance the feature representation, we proposed Triple Attention mixed link Network (TAN) which consists of 1) three different aspects (i.e., kernel, spatial and channel) of attention mechanisms and 2) fu-sion of both powerful residual and dense connections (i.e., mixed link). Specifically, the network with multi kernel learns multi hierarchical representations under different receptive fields. The output features are recalibrated by the effective kernel and channel attentions and feed into next layer partly residual and partly dense, which filters the information and enable the network to learn more powerful representations. The features finally pass through the spatial attention in the reconstruction network which generates a fusion of local and global information, let the network restore more details and improves the quality of reconstructed images. Thanks to the diverse feature recalibrations and the advanced information flow topology, our proposed model is strong enough to per-form against the state-of-the-art methods on the bench-mark evaluations

    Efficient Deep Neural Network for Photo-realistic Image Super-Resolution

    Full text link
    Recent progress in the deep learning-based models has improved photo-realistic (or perceptual) single-image super-resolution significantly. However, despite their powerful performance, many methods are difficult to apply to real-world applications because of the heavy computational requirements. To facilitate the use of a deep model under such demands, we focus on keeping the network efficient while maintaining its performance. In detail, we design an architecture that implements a cascading mechanism on a residual network to boost the performance with limited resources via multi-level feature fusion. In addition, our proposed model adopts group convolution and recursive scheme in order to achieve extreme efficiency. We further improve the perceptual quality of the output by employing the adversarial learning paradigm and a multi-scale discriminator approach. The performance of our method is investigated through extensive internal experiments and benchmark using various datasets. Our results show that our models outperform the recent methods with similar complexity, for both traditional pixel-based and perception-based tasks

    MDCN: Multi-scale Dense Cross Network for Image Super-Resolution

    Full text link
    Convolutional neural networks have been proven to be of great benefit for single-image super-resolution (SISR). However, previous works do not make full use of multi-scale features and ignore the inter-scale correlation between different upsampling factors, resulting in sub-optimal performance. Instead of blindly increasing the depth of the network, we are committed to mining image features and learning the inter-scale correlation between different upsampling factors. To achieve this, we propose a Multi-scale Dense Cross Network (MDCN), which achieves great performance with fewer parameters and less execution time. MDCN consists of multi-scale dense cross blocks (MDCBs), hierarchical feature distillation block (HFDB), and dynamic reconstruction block (DRB). Among them, MDCB aims to detect multi-scale features and maximize the use of image features flow at different scales, HFDB focuses on adaptively recalibrate channel-wise feature responses to achieve feature distillation, and DRB attempts to reconstruct SR images with different upsampling factors in a single model. It is worth noting that all these modules can run independently. It means that these modules can be selectively plugged into any CNN model to improve model performance. Extensive experiments show that MDCN achieves competitive results in SISR, especially in the reconstruction task with multiple upsampling factors. The code will be provided at https://github.com/MIVRC/MDCN-PyTorch.Comment: 15 pages, 15 figure

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    Unsupervised Learning of Monocular Depth Estimation with Bundle Adjustment, Super-Resolution and Clip Loss

    Full text link
    We present a novel unsupervised learning framework for single view depth estimation using monocular videos. It is well known in 3D vision that enlarging the baseline can increase the depth estimation accuracy, and jointly optimizing a set of camera poses and landmarks is essential. In previous monocular unsupervised learning frameworks, only part of the photometric and geometric constraints within a sequence are used as supervisory signals. This may result in a short baseline and overfitting. Besides, previous works generally estimate a low resolution depth from a low resolution impute image. The low resolution depth is then interpolated to recover the original resolution. This strategy may generate large errors on object boundaries, as the depth of background and foreground are mixed to yield the high resolution depth. In this paper, we introduce a bundle adjustment framework and a super-resolution network to solve the above two problems. In bundle adjustment, depths and poses of an image sequence are jointly optimized, which increases the baseline by establishing the relationship between farther frames. The super resolution network learns to estimate a high resolution depth from a low resolution image. Additionally, we introduce the clip loss to deal with moving objects and occlusion. Experimental results on the KITTI dataset show that the proposed algorithm outperforms the state-of-the-art unsupervised methods using monocular sequences, and achieves comparable or even better result compared to unsupervised methods using stereo sequences

    AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results

    Full text link
    This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020. This challenge involves three tracks to super-resolve an input image for ×\times2, ×\times3 and ×\times4 scaling factors, respectively. The goal is to attract more attention to realistic image degradation for the SR task, which is much more complicated and challenging, and contributes to real-world image super-resolution applications. 452 participants were registered for three tracks in total, and 24 teams submitted their results. They gauge the state-of-the-art approaches for real image SR in terms of PSNR and SSIM

    DeepFaceLab: A simple, flexible and extensible face swapping framework

    Full text link
    DeepFaceLab is an open-source deepfake system created by \textbf{iperov} for face swapping with more than 3,000 forks and 13,000 stars in Github: it provides an imperative and easy-to-use pipeline for people to use with no comprehensive understanding of deep learning framework or with model implementation required, while remains a flexible and loose coupling structure for people who need to strengthen their own pipeline with other features without writing complicated boilerplate code. In this paper, we detail the principles that drive the implementation of DeepFaceLab and introduce the pipeline of it, through which every aspect of the pipeline can be modified painlessly by users to achieve their customization purpose, and it's noteworthy that DeepFaceLab could achieve results with high fidelity and indeed indiscernible by mainstream forgery detection approaches. We demonstrate the advantage of our system through comparing our approach with current prevailing systems. For more information, please visit: https://github.com/iperov/DeepFaceLab/

    Deep Learning Convolutional Networks for Multiphoton Microscopy Vasculature Segmentation

    Full text link
    Recently there has been an increasing trend to use deep learning frameworks for both 2D consumer images and for 3D medical images. However, there has been little effort to use deep frameworks for volumetric vascular segmentation. We wanted to address this by providing a freely available dataset of 12 annotated two-photon vasculature microscopy stacks. We demonstrated the use of deep learning framework consisting both 2D and 3D convolutional filters (ConvNet). Our hybrid 2D-3D architecture produced promising segmentation result. We derived the architectures from Lee et al. who used the ZNN framework initially designed for electron microscope image segmentation. We hope that by sharing our volumetric vasculature datasets, we will inspire other researchers to experiment with vasculature dataset and improve the used network architectures.Comment: 23 pages, 10 figure
    • …
    corecore