151,184 research outputs found
Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting
Mixed-integer mathematical programs are among the most commonly used models
for a wide set of problems in Operations Research and related fields. However,
there is still very little known about what can be expressed by small
mixed-integer programs. In particular, prior to this work, it was open whether
some classical problems, like the minimum odd-cut problem, can be expressed by
a compact mixed-integer program with few (even constantly many) integer
variables. This is in stark contrast to linear formulations, where recent
breakthroughs in the field of extended formulations have shown that many
polytopes associated to classical combinatorial optimization problems do not
even admit approximate extended formulations of sub-exponential size.
We provide a general framework for lifting inapproximability results of
extended formulations to the setting of mixed-integer extended formulations,
and obtain almost tight lower bounds on the number of integer variables needed
to describe a variety of classical combinatorial optimization problems. Among
the implications we obtain, we show that any mixed-integer extended formulation
of sub-exponential size for the matching polytope, cut polytope, traveling
salesman polytope or dominant of the odd-cut polytope, needs many integer variables, where is the number of vertices of the
underlying graph. Conversely, the above-mentioned polyhedra admit
polynomial-size mixed-integer formulations with only or (for the traveling salesman polytope) many integer variables.
Our results build upon a new decomposition technique that, for any convex set
, allows for approximating any mixed-integer description of by the
intersection of with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201
On the complexity of nonlinear mixed-integer optimization
This is a survey on the computational complexity of nonlinear mixed-integer
optimization. It highlights a selection of important topics, ranging from
incomputability results that arise from number theory and logic, to recently
obtained fully polynomial time approximation schemes in fixed dimension, and to
strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear
Optimization, IMA Volumes, Springer-Verla
Mixed-integer convex representability
Motivated by recent advances in solution methods for mixed-integer convex
optimization (MICP), we study the fundamental and open question of which sets
can be represented exactly as feasible regions of MICP problems. We establish
several results in this direction, including the first complete
characterization for the mixed-binary case and a simple necessary condition for
the general case. We use the latter to derive the first non-representability
results for various non-convex sets such as the set of rank-1 matrices and the
set of prime numbers. Finally, in correspondence with the seminal work on
mixed-integer linear representability by Jeroslow and Lowe, we study the
representability question under rationality assumptions. Under these
rationality assumptions, we establish that representable sets obey strong
regularity properties such as periodicity, and we provide a complete
characterization of representable subsets of the natural numbers and of
representable compact sets. Interestingly, in the case of subsets of natural
numbers, our results provide a clear separation between the mathematical
modeling power of mixed-integer linear and mixed-integer convex optimization.
In the case of compact sets, our results imply that using unbounded integer
variables is necessary only for modeling unbounded sets
A Conic Integer Programming Approach to Constrained Assortment Optimization under the Mixed Multinomial Logit Model
We consider the constrained assortment optimization problem under the mixed
multinomial logit model. Even moderately sized instances of this problem are
challenging to solve directly using standard mixed-integer linear optimization
formulations. This has motivated recent research exploring customized
optimization strategies and approximation techniques. In contrast, we develop a
novel conic quadratic mixed-integer formulation. This new formulation, together
with McCormick inequalities exploiting the capacity constraints, enables the
solution of large instances using commercial optimization software
Recommended from our members
A Framework for Globally Optimizing Mixed-Integer Signomial Programs
Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers. © 2013 Springer Science+Business Media New York
Polyhedral approximation in mixed-integer convex optimization
Generalizing both mixed-integer linear optimization and convex optimization,
mixed-integer convex optimization possesses broad modeling power but has seen
relatively few advances in general-purpose solvers in recent years. In this
paper, we intend to provide a broadly accessible introduction to our recent
work in developing algorithms and software for this problem class. Our approach
is based on constructing polyhedral outer approximations of the convex
constraints, resulting in a global solution by solving a finite number of
mixed-integer linear and continuous convex subproblems. The key advance we
present is to strengthen the polyhedral approximations by constructing them in
a higher-dimensional space. In order to automate this extended formulation we
rely on the algebraic modeling technique of disciplined convex programming
(DCP), and for generality and ease of implementation we use conic
representations of the convex constraints. Although our framework requires a
manual translation of existing models into DCP form, after performing this
transformation on the MINLPLIB2 benchmark library we were able to solve a
number of unsolved instances and on many other instances achieve superior
performance compared with state-of-the-art solvers like Bonmin, SCIP, and
Artelys Knitro
Mirror-Descent Methods in Mixed-Integer Convex Optimization
In this paper, we address the problem of minimizing a convex function f over
a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study
an algorithmic approach to this problem, postponing its hardness to the
realization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems with
two integer variables, we show that the oracle can be implemented efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous
variables, where B is a known bound on the absolute value of the integer
variables.Our algorithm can be adapted to find the second best point of a
purely integer convex optimization problem in two dimensions, and more
generally its k-th best point. This observation allows us to formulate a
finite-time algorithm for mixed-integer convex optimization
- …
