151,184 research outputs found

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Mixed-integer convex representability

    Get PDF
    Motivated by recent advances in solution methods for mixed-integer convex optimization (MICP), we study the fundamental and open question of which sets can be represented exactly as feasible regions of MICP problems. We establish several results in this direction, including the first complete characterization for the mixed-binary case and a simple necessary condition for the general case. We use the latter to derive the first non-representability results for various non-convex sets such as the set of rank-1 matrices and the set of prime numbers. Finally, in correspondence with the seminal work on mixed-integer linear representability by Jeroslow and Lowe, we study the representability question under rationality assumptions. Under these rationality assumptions, we establish that representable sets obey strong regularity properties such as periodicity, and we provide a complete characterization of representable subsets of the natural numbers and of representable compact sets. Interestingly, in the case of subsets of natural numbers, our results provide a clear separation between the mathematical modeling power of mixed-integer linear and mixed-integer convex optimization. In the case of compact sets, our results imply that using unbounded integer variables is necessary only for modeling unbounded sets

    A Conic Integer Programming Approach to Constrained Assortment Optimization under the Mixed Multinomial Logit Model

    Full text link
    We consider the constrained assortment optimization problem under the mixed multinomial logit model. Even moderately sized instances of this problem are challenging to solve directly using standard mixed-integer linear optimization formulations. This has motivated recent research exploring customized optimization strategies and approximation techniques. In contrast, we develop a novel conic quadratic mixed-integer formulation. This new formulation, together with McCormick inequalities exploiting the capacity constraints, enables the solution of large instances using commercial optimization software

    Polyhedral approximation in mixed-integer convex optimization

    Full text link
    Generalizing both mixed-integer linear optimization and convex optimization, mixed-integer convex optimization possesses broad modeling power but has seen relatively few advances in general-purpose solvers in recent years. In this paper, we intend to provide a broadly accessible introduction to our recent work in developing algorithms and software for this problem class. Our approach is based on constructing polyhedral outer approximations of the convex constraints, resulting in a global solution by solving a finite number of mixed-integer linear and continuous convex subproblems. The key advance we present is to strengthen the polyhedral approximations by constructing them in a higher-dimensional space. In order to automate this extended formulation we rely on the algebraic modeling technique of disciplined convex programming (DCP), and for generality and ease of implementation we use conic representations of the convex constraints. Although our framework requires a manual translation of existing models into DCP form, after performing this transformation on the MINLPLIB2 benchmark library we were able to solve a number of unsolved instances and on many other instances achieve superior performance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys Knitro

    Mirror-Descent Methods in Mixed-Integer Convex Optimization

    Get PDF
    In this paper, we address the problem of minimizing a convex function f over a convex set, with the extra constraint that some variables must be integer. This problem, even when f is a piecewise linear function, is NP-hard. We study an algorithmic approach to this problem, postponing its hardness to the realization of an oracle. If this oracle can be realized in polynomial time, then the problem can be solved in polynomial time as well. For problems with two integer variables, we show that the oracle can be implemented efficiently, that is, in O(ln(B)) approximate minimizations of f over the continuous variables, where B is a known bound on the absolute value of the integer variables.Our algorithm can be adapted to find the second best point of a purely integer convex optimization problem in two dimensions, and more generally its k-th best point. This observation allows us to formulate a finite-time algorithm for mixed-integer convex optimization
    corecore