2 research outputs found

    Mixed integer nonlinear programming for Joint Coordination of Plug-in Electrical Vehicles Charging and Smart Grid Operations

    Full text link
    The problem of joint coordination of plug-in electric vehicles (PEVs) charging and grid power control is to minimize both PEVs charging cost and energy generation cost while meeting both residential and PEVs' power demands and suppressing the potential impact of PEVs integration. A bang-bang PEV charging strategy is adopted to exploit its simple online implementation, which requires computation of a mixed integer nonlinear programming problem (MINP) in binary variables of the PEV charging strategy and continuous variables of the grid voltages. A new solver for this MINP is proposed. Its efficiency is shown by numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0445

    Mixed integer nonlinear programming for joint coordination of plug-in electrical vehicles charging and smart grid operations

    Full text link
    © 2019 IEEE. The joint coordination of plug-in electric vehicles(PEVs) charging and grid power control is to minimize both PEVs' charging cost and energy generation cost in meeting both PEVs' power demands and power grid operational constraints. A bang-bang PEV charging strategy is adopted to exploit its simple online implementation, which requires computation of a mixed integer nonlinear programming problem (MINP) in binary variables of the PEV charging and continuous variables of the grid voltages. A novel solver for this challenging MINP is proposed. Its efficiency is shown by numerical simulations
    corecore