2,071,607 research outputs found

    Linear mixed models with endogenous covariates: modeling sequential treatment effects with application to a mobile health study

    Full text link
    Mobile health is a rapidly developing field in which behavioral treatments are delivered to individuals via wearables or smartphones to facilitate health-related behavior change. Micro-randomized trials (MRT) are an experimental design for developing mobile health interventions. In an MRT the treatments are randomized numerous times for each individual over course of the trial. Along with assessing treatment effects, behavioral scientists aim to understand between-person heterogeneity in the treatment effect. A natural approach is the familiar linear mixed model. However, directly applying linear mixed models is problematic because potential moderators of the treatment effect are frequently endogenous---that is, may depend on prior treatment. We discuss model interpretation and biases that arise in the absence of additional assumptions when endogenous covariates are included in a linear mixed model. In particular, when there are endogenous covariates, the coefficients no longer have the customary marginal interpretation. However, these coefficients still have a conditional-on-the-random-effect interpretation. We provide an additional assumption that, if true, allows scientists to use standard software to fit linear mixed model with endogenous covariates, and person-specific predictions of effects can be provided. As an illustration, we assess the effect of activity suggestion in the HeartSteps MRT and analyze the between-person treatment effect heterogeneity

    Estimation of Dynamic Mixed Double Factors Model in High Dimensional Panel Data

    Full text link
    The purpose of this article is to develop the dimension reduction techniques in panel data analysis when the number of individuals and indicators is large. We use Principal Component Analysis (PCA) method to represent large number of indicators by minority common factors in the factor models. We propose the Dynamic Mixed Double Factor Model (DMDFM for short) to re ect cross section and time series correlation with interactive factor structure. DMDFM not only reduce the dimension of indicators but also consider the time series and cross section mixed effect. Different from other models, mixed factor model have two styles of common factors. The regressors factors re flect common trend and reduce the dimension, error components factors re ect difference and weak correlation of individuals. The results of Monte Carlo simulation show that Generalized Method of Moments (GMM) estimators have good unbiasedness and consistency. Simulation also shows that the DMDFM can improve prediction power of the models effectively.Comment: 38 pages, 2 figure

    Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Full text link
    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.Comment: Preliminary version appeared in ECML201
    corecore