200 research outputs found

    Moving Target Parameters Estimation in Non-Coherent MIMO Radar Systems

    Full text link
    The problem of estimating the parameters of a moving target in multiple-input multiple-output (MIMO) radar is considered and a new approach for estimating the moving target parameters by making use of the phase information associated with each transmit-receive path is introduced. It is required for this technique that different receive antennas have the same time reference, but no synchronization of initial phases of the receive antennas is needed and, therefore, the estimation process is non-coherent. We model the target motion within a certain processing interval as a polynomial of general order. The first three coefficients of such a polynomial correspond to the initial location, velocity, and acceleration of the target, respectively. A new maximum likelihood (ML) technique for estimating the target motion coefficients is developed. It is shown that the considered ML problem can be interpreted as the classic "overdetermined" nonlinear least-squares problem. The proposed ML estimator requires multi-dimensional search over the unknown polynomial coefficients. The Cram\'er-Rao Bound (CRB) for the proposed parameter estimation problem is derived. The performance of the proposed estimator is validated by simulation results and is shown to achieve the CRB.Comment: 17 pages, 4 figures, Submitted to the IEEE Trans. Signal Processing in Aug. 201

    Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    Get PDF
    Due to the ever increasing congestion of the space environment, there is an increased demand for real-time situation awareness of all objects in space. An unknown spacecraft maneuver changes the predicted orbit, complicates tracking, and degrades estimate accuracies. Traditional orbit estimation routines are implemented, tested, and compared to a multiple model format that adaptively handles unknown maneuvers. Multiple Model Adaptive Estimation is implemented in an original way to track a non-cooperative satellite by covariance inflation and filtering-through a maneuver. Parameters for successful instantaneous maneuver reconstruction are analyzed. Variable State Dimension estimation of a continuously maneuvering spacecraft is investigated. A requirements based analysis is performed on short arc orbital solutions. Large covariance propagation of potential maneuvers is explored. Using ground-based radars, several thousand simulations are run to develop new techniques to estimate orbits during and after both instantaneous and continuous maneuvers. The new methods discovered are more accurate by a factor of 700 after only a single pass when compared to non-adaptive methods. The algorithms, tactics, and analysis complement on-going efforts to improve Space Situational Awareness and dynamic modeling

    Multiple Model Adaptive Estimator Target Tracker for Maneuvering Targets in Clutter

    Get PDF
    The task of tracking a target in the presence of measurement clutter is a two-fold problem: one of handling measurement association uncertainty (due to clutter), and poorly known or significantly varying target dynamics. Measurement association uncertainty does not allow conventional tracking algorithms (such as Kalman filters) to be implemented directly. Poorly known or varying target dynamics complicate the design of any tracking filter, and filters using only a single dynamics model can rarely handle anything beyond the most benign target maneuvers. In recent years, the Multiple Hypothesis Tracker (MHT) has gained acceptance as a means of handling targets in a measurement-clutter environment. MHT algorithms rely on Gaussian mixture representations of a target\u27s current state estimate, and the number of components within these mixtures grows exponentially with each successive sensor scan. Previous research into techniques that limit the growth of Gaussian mixture components proved that the Integral Square Error cost-function-based algorithm performs well in this role. Also, multiple-model adaptive algorithms have been shown to handle poorly known target dynamics or targets that exhibit a large range of maneuverability over time with excellent results. This research integrates the ISE mixture reduction algorithm into Multiple-Model Adaptive Estimator (MMAE) and Interacting Mixed Model (IMM) tracking algorithms. The algorithms were validated to perform well at a variety of measurement clutter densities by using a Monte Carlo simulation environment based on the C++ language. Compared to single-dynamics-model MHT trackers running against a maneuvering target, the Williams-filter-based, multiple-model algorithms exhibited superior tracking performance

    Multiple Model Methods for Cost Function Based Multiple Hypothesis Trackers

    Get PDF
    Multiple hypothesis trackers (MHTs) are widely accepted as the best means of tracking targets in clutter. This research seeks to incorporate multiple model Kalman filters into an Integral Square Error (ISE) cost-function-based MHT to increase the fidelity of target state estimation. Results indicate that the proposed multiple model methods can properly identify the maneuver mode of a target in dense clutter and ensure that an appropriately tuned filter is used. During benign portions of flight, this causes significant reductions in position and velocity RMS errors compared to a single-filter MHT. During portions of flight when the mixture mean deviates significantly from true target position, so-called deferred decision periods, the multiple model structures tend to accumulate greater RMS errors than a single-filter MHT, but this effect is inconsequential considering the inherently large magnitude of these errors (a non-MHT tracker would not be able to track during these periods at all). The multiple model MHT structures do not negatively impact track life when compared to a single-filter MHT

    Grasping, Perching, And Visual Servoing For Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs) have seen a dramatic growth in the consumer market because of their ability to provide new vantage points for aerial photography and videography. However, there is little consideration for physical interaction with the environment surrounding them. Onboard manipulators are absent, and onboard perception, if existent, is used to avoid obstacles and maintain a minimum distance from them. There are many applications, however, which would benefit greatly from aerial manipulation or flight in close proximity to structures. This work is focused on facilitating these types of close interactions between quadrotors and surrounding objects. We first explore high-speed grasping, enabling a quadrotor to quickly grasp an object while moving at a high relative velocity. Next, we discuss planning and control strategies, empowering a quadrotor to perch on vertical surfaces using a downward-facing gripper. Then, we demonstrate that such interactions can be achieved using only onboard sensors by incorporating vision-based control and vision-based planning. In particular, we show how a quadrotor can use a single camera and an Inertial Measurement Unit (IMU) to perch on a cylinder. Finally, we generalize our approach to consider objects in motion, and we present relative pose estimation and planning, enabling tracking of a moving sphere using only an onboard camera and IMU

    Implementation of tracking algorithms for multistatic systems

    Get PDF
    Due to the increased prevalence of ubiquitous communication technologies and the reduced cost of electronic components, there is an increasing interest in developing networked radar systems. Such networked radar systems offer potential benefits in robustness as well as improvements in performance for detection, tracking and classification. As a branch of applied computer sciences sensor data fusion addresses the ability to process this vast quantity of information, generated by multiple sources, in an effective way. The purpose of this thesis is to validate the tracking algorithms implemented, to determine whether they are capable of identifying and tracking two closely spaced targets, to determine the capability of the system to track a target that moves with fast maneuvers as well as the ability to handle a potential simultaneous attack from both the air and the sea. We present a method for multiple target tracking using multiple sensors both for passive and active sensors. Firstly, regarding active radar, we describe an algorithm for combining range-Doppler data from multiple sensors to perform multi-target tracking. In particular we considered the problem of very poor azimuth resolution. In this case more than two sensors are needed to triangulate target tracks and techniques like multilateration are needed to overcome the problem. Then two tracking algorithms for bistatic DVB-T passive radar based on the Extended Kalman Filter (for single target tracking) and on the Kalman filter (for multiple target tracking), exploiting measurement of bistatic range and bistatic velocity of a target are described. Also the direction of arrival of the target is estimated through beamforming and then used in the tracking model. The algorithms have been tested and validated by using real data
    • …
    corecore