8,307 research outputs found

    Multiparty Dynamics and Failure Modes for Machine Learning and Artificial Intelligence

    Full text link
    An important challenge for safety in machine learning and artificial intelligence systems is a~set of related failures involving specification gaming, reward hacking, fragility to distributional shifts, and Goodhart's or Campbell's law. This paper presents additional failure modes for interactions within multi-agent systems that are closely related. These multi-agent failure modes are more complex, more problematic, and less well understood than the single-agent case, and are also already occurring, largely unnoticed. After motivating the discussion with examples from poker-playing artificial intelligence (AI), the paper explains why these failure modes are in some senses unavoidable. Following this, the paper categorizes failure modes, provides definitions, and cites examples for each of the modes: accidental steering, coordination failures, adversarial misalignment, input spoofing and filtering, and goal co-option or direct hacking. The paper then discusses how extant literature on multi-agent AI fails to address these failure modes, and identifies work which may be useful for the mitigation of these failure modes.Comment: 12 Pages, This version re-submitted to Big Data and Cognitive Computing, Special Issue "Artificial Superintelligence: Coordination & Strategy

    Privacy Risks of Securing Machine Learning Models against Adversarial Examples

    Full text link
    The arms race between attacks and defenses for machine learning models has come to a forefront in recent years, in both the security community and the privacy community. However, one big limitation of previous research is that the security domain and the privacy domain have typically been considered separately. It is thus unclear whether the defense methods in one domain will have any unexpected impact on the other domain. In this paper, we take a step towards resolving this limitation by combining the two domains. In particular, we measure the success of membership inference attacks against six state-of-the-art defense methods that mitigate the risk of adversarial examples (i.e., evasion attacks). Membership inference attacks determine whether or not an individual data record has been part of a model's training set. The accuracy of such attacks reflects the information leakage of training algorithms about individual members of the training set. Adversarial defense methods against adversarial examples influence the model's decision boundaries such that model predictions remain unchanged for a small area around each input. However, this objective is optimized on training data. Thus, individual data records in the training set have a significant influence on robust models. This makes the models more vulnerable to inference attacks. To perform the membership inference attacks, we leverage the existing inference methods that exploit model predictions. We also propose two new inference methods that exploit structural properties of robust models on adversarially perturbed data. Our experimental evaluation demonstrates that compared with the natural training (undefended) approach, adversarial defense methods can indeed increase the target model's risk against membership inference attacks.Comment: ACM CCS 2019, code is available at https://github.com/inspire-group/privacy-vs-robustnes

    Securing Recommender System via Cooperative Training

    Full text link
    Recommender systems are often susceptible to well-crafted fake profiles, leading to biased recommendations. Among existing defense methods, data-processing-based methods inevitably exclude normal samples, while model-based methods struggle to enjoy both generalization and robustness. To this end, we suggest integrating data processing and the robust model to propose a general framework, Triple Cooperative Defense (TCD), which employs three cooperative models that mutually enhance data and thereby improve recommendation robustness. Furthermore, Considering that existing attacks struggle to balance bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems and introduce an efficient attack strategy, Co-training Attack (Co-Attack), which cooperatively optimizes the attack optimization and model training, considering the bi-level setting while maintaining attack efficiency. Moreover, we reveal a potential reason for the insufficient threat of existing attacks is their default assumption of optimizing attacks in undefended scenarios. This overly optimistic setting limits the potential of attacks. Consequently, we put forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack and TCD as a game-theoretic process, thoroughly exploring CoAttack's attack potential in the cooperative training of attack and defense. Extensive experiments on three real datasets demonstrate TCD's superiority in enhancing model robustness. Additionally, we verify that the two proposed attack strategies significantly outperform existing attacks, with game-based GCoAttack posing a greater poisoning threat than CoAttack.Comment: arXiv admin note: text overlap with arXiv:2210.1376

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory
    corecore