3,118 research outputs found

    Recursive integral method for transmission eigenvalues

    Full text link
    Recently, a new eigenvalue problem, called the transmission eigenvalue problem, has attracted many researchers. The problem arose in inverse scattering theory for inhomogeneous media and has important applications in a variety of inverse problems for target identification and nondestructive testing. The problem is numerically challenging because it is non-selfadjoint and nonlinear. In this paper, we propose a recursive integral method for computing transmission eigenvalues from a finite element discretization of the continuous problem. The method, which overcomes some difficulties of existing methods, is based on eigenprojectors of compact operators. It is self-correcting, can separate nearby eigenvalues, and does not require an initial approximation based on some a priori spectral information. These features make the method well suited for the transmission eigenvalue problem whose spectrum is complicated. Numerical examples show that the method is effective and robust.Comment: 18 pages, 8 figure

    A mixed FEM for the quad-curl eigenvalue problem

    Full text link
    The quad-curl problem arises in the study of the electromagnetic interior transmission problem and magnetohydrodynamics (MHD). In this paper, we study the quad-curl eigenvalue problem and propose a mixed method using edge elements for the computation of the eigenvalues. To the author's knowledge, it is the first numerical treatment for the quad-curl eigenvalue problem. Under suitable assumptions on the domain and mesh, we prove the optimal convergence. In addition, we show that the divergence-free condition can be bypassed. Numerical results are provided to show the viability of the method

    A spectral projection method for transmission eigenvalues

    Full text link
    In this paper, we consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides if the region contains eigenvalue(s) or not. It is particularly suitable to test if zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.Comment: The paper has been accepted for publication in SCIENCE CHINA Mathematic

    Essential spectrum of local multi-trace boundary integral operators

    Get PDF
    Considering pure transmission scattering problems in piecewise constant media, we derive an exact analytic formula for the spectrum of the corresponding local multi-trace boundary integral operators in the case where the geometrical configuration does not involve any junction point and all wave numbers equal. We deduce from this the essential spectrum in the case where wave numbers vary. Numerical evidences of these theoretical results are also presented
    • …
    corecore