2 research outputs found

    Mitigation of Flooding and Slow DDoS Attacks in a Software-Defined Network

    Full text link
    Distributed denial of service (DDoS) attacks are a constant threat for services in the Internet. This year, the record for the largest DDoS attack ever observed was set at 1.7 Tbps. Meanwhile, detection and mitigation mechanisms are still lacking behind. Many mitigation systems require the assistance by the victim - or the victim's administrator themself has to become active to mitigate attacks. We introduced a system that can detect attacks, identify attackers, and mitigate the attacks purely within the network infrastructure. With the improved flexibility of software-defined networks, new possibilities to mitigate such attacks can be implemented. In addition to our short paper on the mitigation of reflective DDoS attacks on LCN 2018, we also like to demonstrate our work on mitigating flooding attacks presented at LCN 2017 and our mitigation of slow DDoS attacks. In our demo, we show how these systems can be combined and how they work when faced with such different attacks

    Q-MIND: Defeating Stealthy DoS Attacks in SDN with a Machine-learning based Defense Framework

    Full text link
    Software Defined Networking (SDN) enables flexible and scalable network control and management. However, it also introduces new vulnerabilities that can be exploited by attackers. In particular, low-rate and slow or stealthy Denial-of-Service (DoS) attacks are recently attracting attention from researchers because of their detection challenges. In this paper, we propose a novel machine learning based defense framework named Q-MIND, to effectively detect and mitigate stealthy DoS attacks in SDN-based networks. We first analyze the adversary model of stealthy DoS attacks, the related vulnerabilities in SDN-based networks and the key characteristics of stealthy DoS attacks. Next, we describe and analyze an anomaly detection system that uses a Reinforcement Learning-based approach based on Q-Learning in order to maximize its detection performance. Finally, we outline the complete Q-MIND defense framework that incorporates the optimal policy derived from the Q-Learning agent to efficiently defeat stealthy DoS attacks in SDN-based networks. An extensive comparison of the Q-MIND framework and currently existing methods shows that significant improvements in attack detection and mitigation performance are obtained by Q-MIND.Comment: This paper has been accepted for publication in IEEE GLOBECOM conference 201
    corecore