3 research outputs found

    A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Get PDF
    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities

    Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Get PDF
    Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF) of the ranging codes. In space-time processing (STP) the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments

    Multiple Antenna-based GPS Multipath Mitigation using Code Carrier Information

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ๊ณตํ•™๋ถ€, 2013. 8. ์ตœ์ง„์˜.์—ฌ๋Ÿฌ ์‘์šฉ๋ถ„์•ผ์—์„œ ์ˆ˜ ์–ต๋Œ€์˜ GPS(Global Positioning System) ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, GPS์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค(LBS: Location Based Services)์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ์™€ ๊ฐ™์€ ์ „ํŒŒ ๋ฐฉํ•ด๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์˜ค์ฐจ๋“ค๋กœ ์ธํ•˜์—ฌ ์ƒ๊ด€ํ•จ์ˆ˜์˜ ์™œ๊ณก์€ ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ธํ•˜์—ฌ GPS์„ ์ด์šฉํ•œ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•˜์—ฌ, ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ์ค„์ด๊ธฐ ์œ„ํ•œ ๊ฐ•์ธํ•˜๊ณ  ํ˜„์‹ค์ ์ธ ๋ฐฉ๋ฒ•์ด ์š”๊ตฌ๋œ๋‹ค. ๋‹ค์ค‘๊ฒฝ๋กœ๋Š” GPS ์‹ ํ˜ธ๊ฐ€ ์žฅ์• ๋ฌผ์— ์˜ํ•ด ๋ฐ˜์‚ฌ๋‚˜ ํšŒ์ ˆ ๋˜์–ด ์ˆ˜์‹ ๊ธฐ์— ๋„์ฐฉํ•  ๋•Œ ์ž˜ ์ผ์–ด๋‚œ๋‹ค. ๊ฐ€์‹œ๊ฒฝ๋กœ ์‹ ํ˜ธ์— ๊ฒฐํ•ฉ๋œ ๋‹ค์ค‘๊ฒฝ๋กœ ์‹ ํ˜ธ๋Š” GPS ์ˆ˜์‹ ๊ธฐ์˜ ์ƒ๊ด€ํ•จ์ˆ˜์˜ ๋ณ€ํ˜•์„ ์ผ์œผํ‚ค๋ฉฐ ๊ถ๊ทน์ ์œผ๋กœ ์ฐจ๋ณ„ํ•จ์ˆ˜์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ๊ฑฐ๋ฆฌ์˜ค์ฐจ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋Š” ์œ„์„ฑํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ•ด๊ฒฐ ๋˜์–ด์•ผ ๋  ๋ฌธ์ œ๋กœ ์Ÿ์ ์ด ๋˜์–ด์™”๋‹ค. ์ตœ๊ทผ์—๋Š” ์ด๋Ÿฌํ•œ ์ „ํŒŒ ๊ฐ„์„ญ์‹ ํ˜ธ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์ค‘๊ฐœ์˜ ์•ˆํ…Œ๋‚˜(Multiple Antenna)๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด GPS ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ˜„ ์‹œ์ ์—์„œ, ๋‹ค์ค‘๊ฐœ์˜ ์•ˆํ…Œ๋‚˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‘์šฉ๋ถ„์•ผ๋Š” ์ฃผ๋กœ ํ•™์ˆ ์ ์ธ ์—ฐ๊ตฌ ๋ฐ ๋ณต์žกํ•œ ๊ตฐ์‚ฌ์šฉ ์—ฐ๊ตฌ๋กœ ์ฃผ๋กœ ์ง„ํ–‰ ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•ˆํ…Œ๋‚˜ ์ œ์ž‘ ๋ฐฉ๋ฒ• ๋ฐ ์ „๊ธฐ์  ์‹œ์Šคํ…œ์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์ด์ „์˜ ํ•˜๋“œ์›จ์–ด ๋ฐ ์†Œํ”„์›จ์–ด์ ์ธ ๋ฌธ์ œ๋ฅผ ์‰ฝ๊ฒŒ ํ•ด๊ฒฐ ๋จ์— ๋”ฐ๋ผ ๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ๊ธฐ๋ฐ˜์˜ ์ˆ˜์‹ ๊ธฐ๊ฐ€ ๋ฏผ๊ฐ„ ์ƒ์šฉ๋ถ„์•ผ๋กœ ํ™•๋Œ€ ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ์ด ๋œ๋‹ค. ๋˜ํ•œ ์•ˆํ…Œ๋‚˜ ์ˆ˜์‹ ๊ธฐ RF๋‹จ์˜ ์†Œํ˜•ํ™”๋กœ ์ธํ•˜์—ฌ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์—์„œ์˜ ์•ˆํ…Œ๋‚˜ ํฌ๊ธฐ ๋ฌธ์ œ์  ๋˜ํ•œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์ค‘ GPS ์•ˆํ…Œ๋‚˜๋ฅผ ์ด์šฉํ•˜์—ฌ GPS ํ•ญ๋ฒ•์—์„œ์˜ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ ๊ฐ์‡„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ•ํ•œ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์‹ ํ˜ธ์— ๋Œ€ํ•˜์—ฌ ๊ณต๊ฐ„ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์€ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ์ผ€๋ฆฌ์–ด ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฐ„์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์œผ๋กœ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋ฅผ ์™„ํ™”์‹œํ‚ค๋ฉฐ, ๋˜ํ•œ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ ๋น„์œจ์„ ์ตœ๋Œ€๋กœ ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด GPS ์ˆ˜์‹ ๊ธฐ๋ฅผ ์‚ฌ์šฉ๋œ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด GPS ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์€ ์ƒˆ๋กœ์šด ์žฅ๋น„์˜ ์ œํ’ˆํ™” ๋ฐ GPS ์‹ ํ˜ธ ๋ถ„์„์— ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ GPS ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„ ๋ฐ ์ˆ˜์‹ ๊ธฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ฒ€์ฆ ๋“ฑ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฐ€๊ณต IF ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์ˆ˜์‹ ๊ธฐ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ ๊ฐ์‡„์— ๊ฐ•์ธํ•˜๋ฉฐ, GPS ํ•ญ๋ฒ•์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜์ •ํ™•๋„ ํ–ฅ์ƒ์— ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋กœ๋ฏ€๋กœ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ฐจ๋Ÿ‰ ํ•ญ๋ฒ• ์‘์šฉ๋ถ„์•ผ์—์„œ ๋ฐฉํ•ด์‹ ํ˜ธ ๊ฐ์‡„์— ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.Although hundreds of millions of receivers are used all around the world, the performance of location-based services(LBS) provided by GPS is still compromised by interference which includes unintentional distortion of correlation function due to multipath propagation. For this reason, the requirement for proper mitigation techniques becomes crucial in GPS receivers for robust, accurate, and reliable positioning. Multipath propagation can easily occur when environmental features cause combinations of reflected and diffracted replica signals to arrive at the receiving antenna. These signals which are combined with the original line-of-sight (LOS) signal can cause distortion of the receiver correlation function and ultimately distortion of the discrimination functionhence, errors in range estimation occur. Therefore, multipath error in the satellite navigation system to improve location accuracy is an important issue to be addressed. Recently, interference mitigation techniques utilizing multiple antennas have gained significant attention in GPS navigation systems. Although at the time of this dissertation, employing multiple antennas in GPS applications is mostly limited to academic research and possibly complicated military applications, it is expected that in the near future, antenna array-based receivers will also become widespread in civilian commercial markets. Rapid advances in antenna design technology and electronic systems make previously challenging problems in hardware and software easier to solve. Furthermore, due to the significant effort devoted to miniaturization of RF front-ends and antennas, the size of antenna array based receivers will no longer be a problem. Given the above, this dissertation investigates multiple antenna-based GPS the interference suppression and multipath mitigation. Firstly, a modified spatial processing technique is proposed that is capable of mitigating both high power interference and coherent and correlated GPS multipath signals. The use of spatial-temporal processing for GPS multipath mitigation is studied. A new method utilizing code carrier information based on multiple antennas is proposed to deal with highly correlated multipath components and to increase the signal to noise ratio of the beamformer by synthesizing antenna array processing. In order to verify the proposed method, a software defined GPS receiver is used. Software-based GPS signal processing technique has already produced benefits for prototyping new equipment and analyzing GPS signal quality. Not only do such receivers provide an excellent research tool for GPS algorithm verification, they also improve GPS receiver performance in a wide range of conditions. In this dissertation, the enhancement of the proposed method is presented in terms of the simulations and software defined GPS receiver using simulated IF data. From the result, the proposed method is robust to interference suppression, and multipath mitigation, and shows a strong possibility for use in improving location accuracy. Thus, this method can be employed to mitigate interference signals in vehicular navigation applications.Contents Abstract i Acknowledgements iv Contents v List of Figures x List of Tables xiv Chapter 1.Introduction 1 1.1 Introduction 1 1.2 Background and Motivation 2 1.2.1 Strong Narrowband and Wideband Interference 6 1.2.2 Multipath 7 1.3 Antenna Array Processing in GPS 11 1.3.1 Interference Suppression 11 1.3.2 Multipath Mitigation 13 1.4 Software-Defined GPS Receiver 15 1.5 Objective and Contribution 17 1.6 Dissertation Outline 18 Chapter 2. Global Positioning System 21 2.1 GPS System Overview 21 2.2 Basic Concept of GSP 25 2.3 Determining Satellite to User 28 2.4 Calculation of User Position 33 2.5 GPS Error Sources 40 2.5.1 Receiver Clock Bias 41 2.5.2 Satellite Clock Bias 42 2.5.3 Atmospheric Delay 43 2.5.4 Ephemeris Delay 46 2.5.5 Multipath Error 47 2.5.6 Receiver Noise 55 2.6 Summary 55 Chapter 3. Antenna Array Processing and Beamforming 56 3.1 Background on Antenna Arrays and Beamformers 56 3.1.1 Signal Model 59 3.2 Conventional Optimum Beamformers 69 3.2.1 Minimum Variance Distortionless Response Beamformer 69 3.2.2 Maximum Likelihood Estimator 71 3.2.3 Maximum Signal to Noise Interference Ratio Beamformer 72 3.2.4 Minimum Power Distortionless Response Beamformer 75 3.2.5 Linear Constrained Minimum Variance and Linear Constrained Minimum Power Beamformers 76 3.2.6 Eigenvector Beamformer 77 3.3 Space-Time Processing 81 3.4 Array Calibration 85 3.5 Summary 86 Chapter 4. Multipath Mitigation using Code-Carrier Information 87 4.1 Introduction 87 4.2 Interference Suppression and Multipath Mitigation 88 4.2.1 Signal Model 88 4.2.2 Interference Suppression by Subspace Projection 90 4.2.3 Multipath Mitigation by Subspace Projection 93 4.3 Determination of Multipath Satellites using Code-carrier Information 95 4.4 MSR Beamformer 100 4.5 Simulation Results 102 4.5.1 Subspace Projection and Beamforming 102 4.5.2 Performance Comparison 109 4.6 Summary 111 Chapter 5. Performance Verification using Software-Defined GPS Receiver 113 5.1 Introduction 113 5.2 Software-Defined GPS Receiver Methodology 114 5.2.1 Software-Defined GPS Receiver Signals 115 5.2.2 Software-Defined GPS Receiver Modules 116 5.3 Architecture of Software-Defined GPS Receiver 120 5.3.1 GPS Signal Generation 120 5.3.2 Interference Signal Generation 124 5.3.1 Front-End Signal Processing 125 5.4 Experimental Results 126 5.3.1 Static Environments 128 5.3.2 Dynamic Environments 133 5.5 Summary 136 Chapter 6. Conclusions and Future Work 138 6.1 Conclusions 138 6.2 Future Work 139 Bibliography 142 Appendix 168 Abstract in Korean 170 Acknowledgments 173Docto
    corecore