1,129 research outputs found

    Reliability of Noisy Quantum Computing Devices

    Full text link
    Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing, but these devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise. This raises concerns for ensuring the stability of program results when using NISQ devices as strategies for mitigating errors generally require well-characterized and reliable error models. Here, we quantify the reliability of NISQ devices by assessing the necessary conditions for generating stable results within a given tolerance. We use similarity metrics derived from device characterization data to analyze the stability of performance across several key features: gate fidelities, de-coherence time, SPAM error, and cross-talk error. We bound the behavior of these metrics derived from their joint probability distribution, and we validate these bounds using numerical simulations of the Bernstein-Vazirani circuit tested on a superconducting transmon device. Our results enable the rigorous testing of reliability in NISQ devices and support the long-term goals of stable quantum computing

    Leakage Detection Framework using Domain-Informed Neural Networks and Support Vector Machines to Augment Self-Healing in Water Distribution Networks

    Get PDF
    The reduction of water leakage is essential for ensuring sustainable and resilient water supply systems. Despite recent investments in sensing technologies, pipe leakage remains a significant challenge for the water sector, particularly in developed nations like the UK, which suffer from aging water infrastructure. Conventional models and analytical methods for detecting pipe leakage often face reliability issues and are generally limited to detecting leaks during nighttime hours. Moreover, leakages are frequently detected by the customers rather than the water companies. To achieve substantial reductions in leakage and enhance public confidence in water supply and management, adopting an intelligent detection method is crucial. Such a method should effectively leverage existing sensor data for reliable leakage identification across the network. This not only helps in minimizing water loss and the associated energy costs of water treatment but also aids in steering the water sector towards a more sustainable and resilient future. As a step towards ‘self-healing’ water infrastructure systems, this study presents a novel framework for rapidly identifying potential leakages at the district meter area (DMA) level. The framework involves training a domain-informed variational autoencoder (VAE) for real-time dimensionality reduction of water flow time series data and developing a two-dimensional surrogate latent variable (LV) mapping which sufficiently and efficiently captures the distinct characteristics of leakage and regular (non-leakage) flow. The domain-informed training employs a novel loss function that ensures a distinct but regulated LV space for the two classes of flow groupings (i.e., leakage and non-leakage). Subsquently, a binary SVM classifier is used to provide a hyperplane for separating the two classes of LVs corresponding to the flow groupings. Hence, the proposed framework can be efficiently utilised to classify the incoming flow as leakage or non-leakage based on the encoded surrogates LVs of the flow time series using the trained VAE encoder. The framework is trained and tested on a dataset of over 2000 DMAs in North Yorkshire, UK, containing water flow time series recorded at 15-minute intervals over one year. The framework performs exceptionally well for both regular and leakage water flow groupings with a classification accuracy of over 98 % on the unobserved test datase

    Tensor-variate machine learning on graphs

    Get PDF
    Traditional machine learning algorithms are facing significant challenges as the world enters the era of big data, with a dramatic expansion in volume and range of applications and an increase in the variety of data sources. The large- and multi-dimensional nature of data often increases the computational costs associated with their processing and raises the risks of model over-fitting - a phenomenon known as the curse of dimensionality. To this end, tensors have become a subject of great interest in the data analytics community, owing to their remarkable ability to super-compress high-dimensional data into a low-rank format, while retaining the original data structure and interpretability. This leads to a significant reduction in computational costs, from an exponential complexity to a linear one in the data dimensions. An additional challenge when processing modern big data is that they often reside on irregular domains and exhibit relational structures, which violates the regular grid assumptions of traditional machine learning models. To this end, there has been an increasing amount of research in generalizing traditional learning algorithms to graph data. This allows for the processing of graph signals while accounting for the underlying relational structure, such as user interactions in social networks, vehicle flows in traffic networks, transactions in supply chains, chemical bonds in proteins, and trading data in financial networks, to name a few. Although promising results have been achieved in these fields, there is a void in literature when it comes to the conjoint treatment of tensors and graphs for data analytics. Solutions in this area are increasingly urgent, as modern big data is both large-dimensional and irregular in structure. To this end, the goal of this thesis is to explore machine learning methods that can fully exploit the advantages of both tensors and graphs. In particular, the following approaches are introduced: (i) Graph-regularized tensor regression framework for modelling high-dimensional data while accounting for the underlying graph structure; (ii) Tensor-algebraic approach for computing efficient convolution on graphs; (iii) Graph tensor network framework for designing neural learning systems which is both general enough to describe most existing neural network architectures and flexible enough to model large-dimensional data on any and many irregular domains. The considered frameworks were employed in several real-world applications, including air quality forecasting, protein classification, and financial modelling. Experimental results validate the advantages of the proposed methods, which achieved better or comparable performance against state-of-the-art models. Additionally, these methods benefit from increased interpretability and reduced computational costs, which are crucial for tackling the challenges posed by the era of big data.Open Acces

    Wind turbine power output short-term forecast : a comparative study of data clustering techniques in a PSO-ANFIS model

    Get PDF
    Abstract:The emergence of new sites for wind energy exploration in South Africa requires an accurate prediction of the potential power output of a typical utility-scale wind turbine in such areas. However, careful selection of data clustering technique is very essential as it has a significant impact on the accuracy of the prediction. Adaptive neurofuzzy inference system (ANFIS), both in its standalone and hybrid form has been applied in offline and online forecast in wind energy studies, however, the effect of clustering techniques has not been reported despite its significance. Therefore, this study investigates the effect of the choice of clustering algorithm on the performance of a standalone ANFIS and ANFIS optimized with particle swarm optimization (PSO) technique using a synthetic wind turbine power output data of a potential site in the Eastern Cape, South Africa. In this study a wind resource map for the Eastern Cape province was developed. Also, autoregressive ANFIS models and their hybrids with PSO were developed. Each model was evaluated based on three clustering techniques (grid partitioning (GP), subtractive clustering (SC), and fuzzy-c-means (FCM)). The gross wind power of the model wind turbine was estimated from the wind speed data collected from the potential site at 10 min data resolution using Windographer software. The standalone and hybrid models were trained and tested with 70% and 30% of the dataset respectively. The performance of each clustering technique was compared for both standalone and PSO-ANFIS models using known statistical metrics. From our findings, ANFIS standalone model clustered with SC performed best among the standalone models with a root mean square error (RMSE) of 0.132, mean absolute percentage error (MAPE) of 30.94, a mean absolute deviation (MAD) of 0.077, relative mean bias error (rMBE) of 0.190 and variance accounted for (VAF) of 94.307. Also, PSO-ANFIS model clustered with SC technique performed the best among the three hybrid models with RMSE of 0.127, MAPE of 28.11, MAD of 0.078, rMBE of 0.190 and VAF of 94.311. The ANFIS-SC model recorded the lowest computational time of 30.23secs among the standalone models. However, the PSO-ANFIS-SC model recorded a computational time of 47.21secs. Based on our findings, a hybrid ANFIS model gives better forecast accuracy compared to the standalone model, though with a trade-off in the computational time. Since, the choice of clustering technique was observed to play a vital role in the forecast accuracy of standalone and hybrid models, this study recommends SC technique for ANFIS modeling at both standalone and hybrid models

    Extending time series forecasting methods using functional principal components analysis

    Get PDF
    Traffic volume forecasts are used by many transportation analysis and management systems to better characterize and react to fluctuating traffic patterns. Most current forecasting methods do not take advantage of the underlying functional characteristics of the time series to make predictions. This paper presents a methodology that uses Functional Principal Components Analysis (FPCA) to create smooth and differentiable daily traffic forecasts. The methodology is validated with a data set of 1,813 days of 15 minute aggregated traffic volume time series. Both the FPCA based forecasts and the associated prediction intervals outperform traditional Seasonal Autoregressive Integrated Moving Average (SARIMA) based methods --Abstract, page iii
    • …
    corecore