1,100 research outputs found

    Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss

    Full text link
    Recent studies have highlighted that deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we improve the robustness of DNNs by utilizing techniques of Distance Metric Learning. Specifically, we incorporate Triplet Loss, one of the most popular Distance Metric Learning methods, into the framework of adversarial training. Our proposed algorithm, Adversarial Training with Triplet Loss (AT2^2L), substitutes the adversarial example against the current model for the anchor of triplet loss to effectively smooth the classification boundary. Furthermore, we propose an ensemble version of AT2^2L, which aggregates different attack methods and model structures for better defense effects. Our empirical studies verify that the proposed approach can significantly improve the robustness of DNNs without sacrificing accuracy. Finally, we demonstrate that our specially designed triplet loss can also be used as a regularization term to enhance other defense methods

    RAIN: A Simple Approach for Robust and Accurate Image Classification Networks

    Full text link
    It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy. The undesirable severe drop in accuracy adversely affects the reliability of machine learning algorithms and prohibits their deployment in realistic applications. This paper aims to address this dilemma by proposing a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN), to improve the robustness of given CNN classifiers and, at the same time, preserve their high prediction accuracies. RAIN introduces a new randomization-enhancement scheme. It applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness. However, similar to existing preprocessing-based methods, the randomized process will degrade the prediction accuracy. To understand why this is the case, we compare the difference between original and processed images, and find it is the loss of high-frequency components in the input image that leads to accuracy drop of the classifier. Based on this finding, RAIN enhances the input's high-frequency details to retain the CNN's high prediction accuracy. Concretely, RAIN consists of two novel randomization modules: randomized small circular shift (RdmSCS) and randomized down-upsampling (RdmDU). The RdmDU module randomly downsamples the input image, and then the RdmSCS module circularly shifts the input image along a randomly chosen direction by a small but random number of pixels. Finally, the RdmDU module performs upsampling with a detail-enhancement model, such as deep super-resolution networks. We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks

    Adversarial Attacks and Defences Competition

    Full text link
    To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them. In this chapter, we describe the structure and organization of the competition and the solutions developed by several of the top-placing teams.Comment: 36 pages, 10 figure

    Thwarting finite difference adversarial attacks with output randomization

    Full text link
    Adversarial examples pose a threat to deep neural network models in a variety of scenarios, from settings where the adversary has complete knowledge of the model and to the opposite "black box" setting. Black box attacks are particularly threatening as the adversary only needs access to the input and output of the model. Defending against black box adversarial example generation attacks is paramount as currently proposed defenses are not effective. Since these types of attacks rely on repeated queries to the model to estimate gradients over input dimensions, we investigate the use of randomization to thwart such adversaries from successfully creating adversarial examples. Randomization applied to the output of the deep neural network model has the potential to confuse potential attackers, however this introduces a tradeoff between accuracy and robustness. We show that for certain types of randomization, we can bound the probability of introducing errors by carefully setting distributional parameters. For the particular case of finite difference black box attacks, we quantify the error introduced by the defense in the finite difference estimate of the gradient. Lastly, we show empirically that the defense can thwart two adaptive black box adversarial attack algorithms

    CAAD 2018: Generating Transferable Adversarial Examples

    Full text link
    Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations carefully crafted to fool the targeted DNN, in both the non-targeted and targeted case. In the non-targeted case, the attacker simply aims to induce misclassification. In the targeted case, the attacker aims to induce classification to a specified target class. In addition, it has been observed that strong adversarial examples can transfer to unknown models, yielding a serious security concern. The NIPS 2017 competition was organized to accelerate research in adversarial attacks and defenses, taking place in the realistic setting where submitted adversarial attacks attempt to transfer to submitted defenses. The CAAD 2018 competition took place with nearly identical rules to the NIPS 2017 one. Given the requirement that the NIPS 2017 submissions were to be open-sourced, participants in the CAAD 2018 competition were able to directly build upon previous solutions, and thus improve the state-of-the-art in this setting. Our team participated in the CAAD 2018 competition, and won 1st place in both attack subtracks, non-targeted and targeted adversarial attacks, and 3rd place in defense. We outline our solutions and development results in this article. We hope our results can inform researchers in both generating and defending against adversarial examples.Comment: 1st place attack solutions and 3rd place defense in CAAD 2018 Competitio

    Defending against adversarial attacks by randomized diversification

    Full text link
    The vulnerability of machine learning systems to adversarial attacks questions their usage in many applications. In this paper, we propose a randomized diversification as a defense strategy. We introduce a multi-channel architecture in a gray-box scenario, which assumes that the architecture of the classifier and the training data set are known to the attacker. The attacker does not only have access to a secret key and to the internal states of the system at the test time. The defender processes an input in multiple channels. Each channel introduces its own randomization in a special transform domain based on a secret key shared between the training and testing stages. Such a transform based randomization with a shared key preserves the gradients in key-defined sub-spaces for the defender but it prevents gradient back propagation and the creation of various bypass systems for the attacker. An additional benefit of multi-channel randomization is the aggregation that fuses soft-outputs from all channels, thus increasing the reliability of the final score. The sharing of a secret key creates an information advantage to the defender. Experimental evaluation demonstrates an increased robustness of the proposed method to a number of known state-of-the-art attacks

    On the Security of Randomized Defenses Against Adversarial Samples

    Full text link
    Deep Learning has been shown to be particularly vulnerable to adversarial samples. To combat adversarial strategies, numerous defensive techniques have been proposed. Among these, a promising approach is to use randomness in order to make the classification process unpredictable and presumably harder for the adversary to control. In this paper, we study the effectiveness of randomized defenses against adversarial samples. To this end, we categorize existing state-of-the-art adversarial strategies into three attacker models of increasing strength, namely blackbox, graybox, and whitebox (a.k.a.~adaptive) attackers. We also devise a lightweight randomization strategy for image classification based on feature squeezing, that consists of pre-processing the classifier input by embedding randomness within each feature, before applying feature squeezing. We evaluate the proposed defense and compare it to other randomized techniques in the literature via thorough experiments. Our results indeed show that careful integration of randomness can be effective against both graybox and blackbox attacks without significantly degrading the accuracy of the underlying classifier. However, our experimental results offer strong evidence that in the present form such randomization techniques cannot deter a whitebox adversary that has access to all classifier parameters and has full knowledge of the defense. Our work thoroughly and empirically analyzes the impact of randomization techniques against all classes of adversarial strategies

    Mitigating Advanced Adversarial Attacks with More Advanced Gradient Obfuscation Techniques

    Full text link
    Deep Neural Networks (DNNs) are well-known to be vulnerable to Adversarial Examples (AEs). A large amount of efforts have been spent to launch and heat the arms race between the attackers and defenders. Recently, advanced gradient-based attack techniques were proposed (e.g., BPDA and EOT), which have defeated a considerable number of existing defense methods. Up to today, there are still no satisfactory solutions that can effectively and efficiently defend against those attacks. In this paper, we make a steady step towards mitigating those advanced gradient-based attacks with two major contributions. First, we perform an in-depth analysis about the root causes of those attacks, and propose four properties that can break the fundamental assumptions of those attacks. Second, we identify a set of operations that can meet those properties. By integrating these operations, we design two preprocessing functions that can invalidate these powerful attacks. Extensive evaluations indicate that our solutions can effectively mitigate all existing standard and advanced attack techniques, and beat 11 state-of-the-art defense solutions published in top-tier conferences over the past 2 years. The defender can employ our solutions to constrain the attack success rate below 7% for the strongest attacks even the adversary has spent dozens of GPU hours

    Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations

    Full text link
    In this work, we present a framework to measure and mitigate intrinsic biases with respect to protected variables --such as gender-- in visual recognition tasks. We show that trained models significantly amplify the association of target labels with gender beyond what one would expect from biased datasets. Surprisingly, we show that even when datasets are balanced such that each label co-occurs equally with each gender, learned models amplify the association between labels and gender, as much as if data had not been balanced! To mitigate this, we adopt an adversarial approach to remove unwanted features corresponding to protected variables from intermediate representations in a deep neural network -- and provide a detailed analysis of its effectiveness. Experiments on two datasets: the COCO dataset (objects), and the imSitu dataset (actions), show reductions in gender bias amplification while maintaining most of the accuracy of the original models.Comment: 10 pages, 7 figures, ICCV 201

    Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples

    Full text link
    We identify obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples. While defenses that cause obfuscated gradients appear to defeat iterative optimization-based attacks, we find defenses relying on this effect can be circumvented. We describe characteristic behaviors of defenses exhibiting the effect, and for each of the three types of obfuscated gradients we discover, we develop attack techniques to overcome it. In a case study, examining non-certified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 9 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely, and 1 partially, in the original threat model each paper considers.Comment: ICML 2018. Source code at https://github.com/anishathalye/obfuscated-gradient
    corecore