148 research outputs found

    Minkowski Decomposition of Associahedra and Related Combinatorics

    Full text link
    Realisations of associahedra with linearly non-isomorphic normal fans can be obtained by alteration of the right-hand sides of the facet-defining inequalities from a classical permutahedron. These polytopes can be expressed as Minkowski sums and differences of dilated faces of a standard simplex as described by Ardila, Benedetti & Doker (2010). The coefficients yIy_I of such a Minkowski decomposition can be computed by M\"obius inversion if tight right-hand sides zIz_I are known not just for the facet-defining inequalities of the associahedron but also for all inequalities of the permutahedron that are redundant for the associahedron. We show for certain families of these associahedra: (a) how to compute tight values zIz_I for the redundant inequalities from the values zIz_I for the facet-defining inequalities; (b) the computation of the values yIy_I of Ardila, Benedetti & Doker can be significantly simplified and at most four values za(I)z_{a(I)}, zb(I)z_{b(I)}, zc(I)z_{c(I)} and zd(I)z_{d(I)} are needed to compute yIy_I; (c) the four indices a(I)a(I), b(I)b(I), c(I)c(I) and d(I)d(I) are determined by the geometry of the normal fan of the associahedron and are described combinatorially; (d) a combinatorial interpretation of the values yIy_I using a labeled nn-gon. This last result is inspired from similar interpretations for vertex coordinates originally described originally by J.-L. Loday and well-known interpretations for the zIz_I-values of facet-defining inequalities.Comment: 30 pages; 21 figures; changed title; minor stylistic change

    Which nestohedra are removahedra?

    Full text link
    A removahedron is a polytope obtained by deleting inequalities from the facet description of the classical permutahedron. Relevant examples range from the associahedra to the permutahedron itself, which raises the natural question to characterize which nestohedra can be realized as removahedra. In this note, we show that the nested complex of any connected building set closed under intersection can be realized as a removahedron. We present two different complementary proofs: one based on the building trees and the nested fan, and the other based on Minkowski sums of dilated faces of the standard simplex. In general, this closure condition is sufficient but not necessary to obtain removahedra. However, we show that it is also necessary to obtain removahedra from graphical building sets, and that it is equivalent to the corresponding graph being chordful (i.e. any cycle induces a clique).Comment: 13 pages, 4 figures; Version 2: new Remark 2

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction

    The brick polytope of a sorting network

    Get PDF
    The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.Comment: 36 pages, 25 figures; Version 2 refers to the recent generalization of our results to spherical subword complexes on finite Coxeter groups (http://arxiv.org/abs/1111.3349

    Many non-equivalent realizations of the associahedron

    Full text link
    Hohlweg and Lange (2007) and Santos (2004, unpublished) have found two different ways of constructing exponential families of realizations of the n-dimensional associahedron with normal vectors in {0,1,-1}^n, generalizing the constructions of Loday (2004) and Chapoton-Fomin-Zelevinsky (2002). We classify the associahedra obtained by these constructions modulo linear equivalence of their normal fans and show, in particular, that the only realization that can be obtained with both methods is the Chapoton-Fomin-Zelevinsky (2002) associahedron. For the Hohlweg-Lange associahedra our classification is a priori coarser than the classification up to isometry of normal fans, by Bergeron-Hohlweg-Lange-Thomas (2009). However, both yield the same classes. As a consequence, we get that two Hohlweg-Lange associahedra have linearly equivalent normal fans if and only if they are isometric. The Santos construction, which produces an even larger family of associahedra, appears here in print for the first time. Apart of describing it in detail we relate it with the c-cluster complexes and the denominator fans in cluster algebras of type A. A third classical construction of the associahedron, as the secondary polytope of a convex n-gon (Gelfand-Kapranov-Zelevinsky, 1990), is shown to never produce a normal fan linearly equivalent to any of the other two constructions.Comment: 30 pages, 13 figure

    Generalized Permutohedra from Probabilistic Graphical Models

    Get PDF
    A graphical model encodes conditional independence relations via the Markov properties. For an undirected graph these conditional independence relations can be represented by a simple polytope known as the graph associahedron, which can be constructed as a Minkowski sum of standard simplices. There is an analogous polytope for conditional independence relations coming from a regular Gaussian model, and it can be defined using multiinformation or relative entropy. For directed acyclic graphical models and also for mixed graphical models containing undirected, directed and bidirected edges, we give a construction of this polytope, up to equivalence of normal fans, as a Minkowski sum of matroid polytopes. Finally, we apply this geometric insight to construct a new ordering-based search algorithm for causal inference via directed acyclic graphical models.Comment: Appendix B is expanded. Final version to appear in SIAM J. Discrete Mat
    corecore