28,248 research outputs found

    Integrating Fuzzy Decisioning Models With Relational Database Constructs

    Get PDF
    Human learning and classification is a nebulous area in computer science. Classic decisioning problems can be solved given enough time and computational power, but discrete algorithms cannot easily solve fuzzy problems. Fuzzy decisioning can resolve more real-world fuzzy problems, but existing algorithms are often slow, cumbersome and unable to give responses within a reasonable timeframe to anything other than predetermined, small dataset problems. We have developed a database-integrated highly scalable solution to training and using fuzzy decision models on large datasets. The Fuzzy Decision Tree algorithm is the integration of the Quinlan ID3 decision-tree algorithm together with fuzzy set theory and fuzzy logic. In existing research, when applied to the microRNA prediction problem, Fuzzy Decision Tree outperformed other machine learning algorithms including Random Forest, C4.5, SVM and Knn. In this research, we propose that the effectiveness with which large dataset fuzzy decisions can be resolved via the Fuzzy Decision Tree algorithm is significantly improved when using a relational database as the storage unit for the fuzzy ID3 objects, versus traditional storage objects. Furthermore, it is demonstrated that pre-processing certain pieces of the decisioning within the database layer can lead to much swifter membership determinations, especially on Big Data datasets. The proposed algorithm uses the concepts inherent to databases: separated schemas, indexing, partitioning, pipe-and-filter transformations, preprocessing data, materialized and regular views, etc., to present a model with a potential to learn from itself. Further, this work presents a general application model to re-architect Big Data applications in order to efficiently present decisioned results: lowering the volume of data being handled by the application itself, and significantly decreasing response wait times while allowing the flexibility and permanence of a standard relational SQL database, supplying optimal user satisfaction in today\u27s Data Analytics world. We experimentally demonstrate the effectiveness of our approach

    Task-specific Word Identification from Short Texts Using a Convolutional Neural Network

    Full text link
    Task-specific word identification aims to choose the task-related words that best describe a short text. Existing approaches require well-defined seed words or lexical dictionaries (e.g., WordNet), which are often unavailable for many applications such as social discrimination detection and fake review detection. However, we often have a set of labeled short texts where each short text has a task-related class label, e.g., discriminatory or non-discriminatory, specified by users or learned by classification algorithms. In this paper, we focus on identifying task-specific words and phrases from short texts by exploiting their class labels rather than using seed words or lexical dictionaries. We consider the task-specific word and phrase identification as feature learning. We train a convolutional neural network over a set of labeled texts and use score vectors to localize the task-specific words and phrases. Experimental results on sentiment word identification show that our approach significantly outperforms existing methods. We further conduct two case studies to show the effectiveness of our approach. One case study on a crawled tweets dataset demonstrates that our approach can successfully capture the discrimination-related words/phrases. The other case study on fake review detection shows that our approach can identify the fake-review words/phrases.Comment: accepted by Intelligent Data Analysis, an International Journa

    The Online Laboratory: Conducting Experiments in a Real Labor Market

    Get PDF
    Online labor markets have great potential as platforms for conducting experiments, as they provide immediate access to a large and diverse subject pool and allow researchers to conduct randomized controlled trials. We argue that online experiments can be just as valid---both internally and externally---as laboratory and field experiments, while requiring far less money and time to design and to conduct. In this paper, we first describe the benefits of conducting experiments in online labor markets; we then use one such market to replicate three classic experiments and confirm their results. We confirm that subjects (1) reverse decisions in response to how a decision-problem is framed, (2) have pro-social preferences (value payoffs to others positively), and (3) respond to priming by altering their choices. We also conduct a labor supply field experiment in which we confirm that workers have upward sloping labor supply curves. In addition to reporting these results, we discuss the unique threats to validity in an online setting and propose methods for coping with these threats. We also discuss the external validity of results from online domains and explain why online results can have external validity equal to or even better than that of traditional methods, depending on the research question. We conclude with our views on the potential role that online experiments can play within the social sciences, and then recommend software development priorities and best practices

    Automated Influence and the Challenge of Cognitive Security

    Get PDF
    Advances in AI are powering increasingly precise and widespread computational propaganda, posing serious threats to national security. The military and intelligence communities are starting to discuss ways to engage in this space, but the path forward is still unclear. These developments raise pressing ethical questions, about which existing ethics frameworks are silent. Understanding these challenges through the lens of “cognitive security,” we argue, offers a promising approach
    corecore