12,637 research outputs found

    Coming: a Tool for Mining Change Pattern Instances from Git Commits

    Full text link
    Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern. In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit. We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    The Impact of Systematic Edits in History Slicing

    Full text link
    While extracting a subset of a commit history, specifying the necessary portion is a time-consuming task for developers. Several commit-based history slicing techniques have been proposed to identify dependencies between commits and to extract a related set of commits using a specific commit as a slicing criterion. However, the resulting subset of commits become large if commits for systematic edits whose changes do not depend on each other exist. We empirically investigated the impact of systematic edits on history slicing. In this study, commits in which systematic edits were detected are split between each file so that unnecessary dependencies between commits are eliminated. In several histories of open source systems, the size of history slices was reduced by 13.3-57.2% on average after splitting the commits for systematic edits.Comment: 5 pages, MSR 201

    A Data Set of Generalizable Python Code Change Patterns

    Full text link
    Mining repetitive code changes from version control history is a common way of discovering unknown change patterns. Such change patterns can be used in code recommender systems or automated program repair techniques. While there are such tools and datasets exist for Java, there is little work on finding and recommending such changes in Python. In this paper, we present a data set of manually vetted generalizable Python repetitive code change patterns. We create a coding guideline to identify generalizable change patterns that can be used in automated tooling. We leverage the mined change patterns from recent work that mines repetitive changes in Python projects and use our coding guideline to manually review the patterns. For each change, we also record a description of the change and why it is applied along with other characteristics such as the number of projects it occurs in. This review process allows us to identify and share 72 Python change patterns that can be used to build and advance Python developer support tools
    corecore