13,167 research outputs found

    Causal Inference in Disease Spread across a Heterogeneous Social System

    Full text link
    Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering the underlying diffusion mechanisms, which is challenging due to invisible causality between events and their time-evolving intensity. We infer causal relationships between infections and quantify the reflexivity of a meta-population, the level of feedback on event occurrences by its internal dynamics (likelihood of a regional outbreak triggered by previous cases). These are enabled by our new proposed model, the Latent Influence Point Process (LIPP) which models disease spread by incorporating macro-level internal dynamics of meta-populations based on human mobility. We analyse 15-year dengue cases in Queensland, Australia. From our causal inference, outbreaks are more likely driven by statewide global diffusion over time, leading to complex behavior of disease spread. In terms of reflexivity, precursory growth and symmetric decline in populous regions is attributed to slow but persistent feedback on preceding outbreaks via inter-group dynamics, while abrupt growth but sharp decline in peripheral areas is led by rapid but inconstant feedback via intra-group dynamics. Our proposed model reveals probabilistic causal relationships between discrete events based on intra- and inter-group dynamics and also covers direct and indirect diffusion processes (contact-based and vector-borne disease transmissions).Comment: arXiv admin note: substantial text overlap with arXiv:1711.0635

    Detecting Flow Anomalies in Distributed Systems

    Get PDF
    Deep within the networks of distributed systems, one often finds anomalies that affect their efficiency and performance. These anomalies are difficult to detect because the distributed systems may not have sufficient sensors to monitor the flow of traffic within the interconnected nodes of the networks. Without early detection and making corrections, these anomalies may aggravate over time and could possibly cause disastrous outcomes in the system in the unforeseeable future. Using only coarse-grained information from the two end points of network flows, we propose a network transmission model and a localization algorithm, to detect the location of anomalies and rank them using a proposed metric within distributed systems. We evaluate our approach on passengers' records of an urbanized city's public transportation system and correlate our findings with passengers' postings on social media microblogs. Our experiments show that the metric derived using our localization algorithm gives a better ranking of anomalies as compared to standard deviation measures from statistical models. Our case studies also demonstrate that transportation events reported in social media microblogs matches the locations of our detect anomalies, suggesting that our algorithm performs well in locating the anomalies within distributed systems

    Detecting and Explaining Causes From Text For a Time Series Event

    Full text link
    Explaining underlying causes or effects about events is a challenging but valuable task. We define a novel problem of generating explanations of a time series event by (1) searching cause and effect relationships of the time series with textual data and (2) constructing a connecting chain between them to generate an explanation. To detect causal features from text, we propose a novel method based on the Granger causality of time series between features extracted from text such as N-grams, topics, sentiments, and their composition. The generation of the sequence of causal entities requires a commonsense causative knowledge base with efficient reasoning. To ensure good interpretability and appropriate lexical usage we combine symbolic and neural representations, using a neural reasoning algorithm trained on commonsense causal tuples to predict the next cause step. Our quantitative and human analysis show empirical evidence that our method successfully extracts meaningful causality relationships between time series with textual features and generates appropriate explanation between them.Comment: Accepted at EMNLP 201
    • …
    corecore