35,466 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    GCG: Mining Maximal Complete Graph Patterns from Large Spatial Data

    Full text link
    Recent research on pattern discovery has progressed from mining frequent patterns and sequences to mining structured patterns, such as trees and graphs. Graphs as general data structure can model complex relations among data with wide applications in web exploration and social networks. However, the process of mining large graph patterns is a challenge due to the existence of large number of subgraphs. In this paper, we aim to mine only frequent complete graph patterns. A graph g in a database is complete if every pair of distinct vertices is connected by a unique edge. Grid Complete Graph (GCG) is a mining algorithm developed to explore interesting pruning techniques to extract maximal complete graphs from large spatial dataset existing in Sloan Digital Sky Survey (SDSS) data. Using a divide and conquer strategy, GCG shows high efficiency especially in the presence of large number of patterns. In this paper, we describe GCG that can mine not only simple co-location spatial patterns but also complex ones. To the best of our knowledge, this is the first algorithm used to exploit the extraction of maximal complete graphs in the process of mining complex co-location patterns in large spatial dataset.Comment: 1

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous
    corecore