4,703 research outputs found

    Mining Software Repositories to Assist Developers and Support Managers

    Get PDF
    This thesis explores mining the evolutionary history of a software system to support software developers and managers in their endeavors to build and maintain complex software systems. We introduce the idea of evolutionary extractors which are specialized extractors that can recover the history of software projects from software repositories, such as source control systems. The challenges faced in building C-REX, an evolutionary extractor for the C programming language, are discussed. We examine the use of source control systems in industry and the quality of the recovered C-REX data through a survey of several software practitioners. Using the data recovered by C-REX, we develop several approaches and techniques to assist developers and managers in their activities. We propose Source Sticky Notes to assist developers in understanding legacy software systems by attaching historical information to the dependency graph. We present the Development Replay approach to estimate the benefits of adopting new software maintenance tools by reenacting the development history. We propose the Top Ten List which assists managers in allocating testing resources to the subsystems that are most susceptible to have faults. To assist managers in improving the quality of their projects, we present a complexity metric which quantifies the complexity of the changes to the code instead of quantifying the complexity of the source code itself. All presented approaches are validated empirically using data from several large open source systems. The presented work highlights the benefits of transforming software repositories from static record keeping repositories to active repositories used by researchers to gain empirically based understanding of software development, and by software practitioners to predict, plan and understand various aspects of their project

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities
    corecore