24 research outputs found

    How do you correct run-on sentences it's not as easy as it seems

    Full text link
    Run-on sentences are common grammatical mistakes but little research has tackled this problem to date. This work introduces two machine learning models to correct run-on sentences that outperform leading methods for related tasks, punctuation restoration and whole-sentence grammatical error correction. Due to the limited annotated data for this error, we experiment with artificially generating training data from clean newswire text. Our findings suggest artificial training data is viable for this task. We discuss implications for correcting run-ons and other types of mistakes that have low coverage in error-annotated corpora.Comment: To appear in W-NUT 2018: Workshop on Noisy User-generated Text (at EMNLP

    Constructing a Family Tree of Ten Indo-European Languages with Delexicalized Cross-linguistic Transfer Patterns

    Full text link
    It is reasonable to hypothesize that the divergence patterns formulated by historical linguists and typologists reflect constraints on human languages, and are thus consistent with Second Language Acquisition (SLA) in a certain way. In this paper, we validate this hypothesis on ten Indo-European languages. We formalize the delexicalized transfer as interpretable tree-to-string and tree-to-tree patterns which can be automatically induced from web data by applying neural syntactic parsing and grammar induction technologies. This allows us to quantitatively probe cross-linguistic transfer and extend inquiries of SLA. We extend existing works which utilize mixed features and support the agreement between delexicalized cross-linguistic transfer and the phylogenetic structure resulting from the historical-comparative paradigm

    Parallel Data Augmentation for Formality Style Transfer

    Full text link
    The main barrier to progress in the task of Formality Style Transfer is the inadequacy of training data. In this paper, we study how to augment parallel data and propose novel and simple data augmentation methods for this task to obtain useful sentence pairs with easily accessible models and systems. Experiments demonstrate that our augmented parallel data largely helps improve formality style transfer when it is used to pre-train the model, leading to the state-of-the-art results in the GYAFC benchmark dataset.Comment: Accepted by ACL 2020. arXiv admin note: text overlap with arXiv:1909.0600

    A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction

    Full text link
    We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character N-gram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neural approaches on this task as well as strong statistical machine translation-based systems with neural and task-specific features trained on the same data. Our analysis shows the superiority of convolutional neural networks over recurrent neural networks such as long short-term memory (LSTM) networks in capturing the local context via attention, and thereby improving the coverage in correcting grammatical errors. By ensembling multiple models, and incorporating an N-gram language model and edit features via rescoring, our novel method becomes the first neural approach to outperform the current state-of-the-art statistical machine translation-based approach, both in terms of grammaticality and fluency.Comment: 8 pages, 3 figures, In Proceedings of AAAI 201

    Neural Language Correction with Character-Based Attention

    Full text link
    Natural language correction has the potential to help language learners improve their writing skills. While approaches with separate classifiers for different error types have high precision, they do not flexibly handle errors such as redundancy or non-idiomatic phrasing. On the other hand, word and phrase-based machine translation methods are not designed to cope with orthographic errors, and have recently been outpaced by neural models. Motivated by these issues, we present a neural network-based approach to language correction. The core component of our method is an encoder-decoder recurrent neural network with an attention mechanism. By operating at the character level, the network avoids the problem of out-of-vocabulary words. We illustrate the flexibility of our approach on dataset of noisy, user-generated text collected from an English learner forum. When combined with a language model, our method achieves a state-of-the-art F0.5F_{0.5}-score on the CoNLL 2014 Shared Task. We further demonstrate that training the network on additional data with synthesized errors can improve performance.Comment: 10 page

    Personalizing Grammatical Error Correction: Adaptation to Proficiency Level and L1

    Full text link
    Grammar error correction (GEC) systems have become ubiquitous in a variety of software applications, and have started to approach human-level performance for some datasets. However, very little is known about how to efficiently personalize these systems to the user's characteristics, such as their proficiency level and first language, or to emerging domains of text. We present the first results on adapting a general-purpose neural GEC system to both the proficiency level and the first language of a writer, using only a few thousand annotated sentences. Our study is the broadest of its kind, covering five proficiency levels and twelve different languages, and comparing three different adaptation scenarios: adapting to the proficiency level only, to the first language only, or to both aspects simultaneously. We show that tailoring to both scenarios achieves the largest performance improvement (3.6 F0.5) relative to a strong baseline.Comment: Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Tex

    CUNI System for the Building Educational Applications 2019 Shared Task: Grammatical Error Correction

    Full text link
    In this paper, we describe our systems submitted to the Building Educational Applications (BEA) 2019 Shared Task (Bryant et al., 2019). We participated in all three tracks. Our models are NMT systems based on the Transformer model, which we improve by incorporating several enhancements: applying dropout to whole source and target words, weighting target subwords, averaging model checkpoints, and using the trained model iteratively for correcting the intermediate translations. The system in the Restricted Track is trained on the provided corpora with oversampled "cleaner" sentences and reaches 59.39 F0.5 score on the test set. The system in the Low-Resource Track is trained from Wikipedia revision histories and reaches 44.13 F0.5 score. Finally, we finetune the system from the Low-Resource Track on restricted data and achieve 64.55 F0.5 score, placing third in the Unrestricted Track

    Improving the Efficiency of Grammatical Error Correction with Erroneous Span Detection and Correction

    Full text link
    We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection (ESD) and Erroneous Span Correction (ESC). ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. Then, ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans. Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.Comment: Accepted by EMNLP 202

    Parallel Iterative Edit Models for Local Sequence Transduction

    Full text link
    We present a Parallel Iterative Edit (PIE) model for the problem of local sequence transduction arising in tasks like Grammatical error correction (GEC). Recent approaches are based on the popular encoder-decoder (ED) model for sequence to sequence learning. The ED model auto-regressively captures full dependency among output tokens but is slow due to sequential decoding. The PIE model does parallel decoding, giving up the advantage of modelling full dependency in the output, yet it achieves accuracy competitive with the ED model for four reasons: 1.~predicting edits instead of tokens, 2.~labeling sequences instead of generating sequences, 3.~iteratively refining predictions to capture dependencies, and 4.~factorizing logits over edits and their token argument to harness pre-trained language models like BERT. Experiments on tasks spanning GEC, OCR correction and spell correction demonstrate that the PIE model is an accurate and significantly faster alternative for local sequence transduction.Comment: Accepted at EMNLP-IJCNLP 201

    Learning to combine Grammatical Error Corrections

    Full text link
    The field of Grammatical Error Correction (GEC) has produced various systems to deal with focused phenomena or general text editing. We propose an automatic way to combine black-box systems. Our method automatically detects the strength of a system or the combination of several systems per error type, improving precision and recall while optimizing FF score directly. We show consistent improvement over the best standalone system in all the configurations tested. This approach also outperforms average ensembling of different RNN models with random initializations. In addition, we analyze the use of BERT for GEC - reporting promising results on this end. We also present a spellchecker created for this task which outperforms standard spellcheckers tested on the task of spellchecking. This paper describes a system submission to Building Educational Applications 2019 Shared Task: Grammatical Error Correction. Combining the output of top BEA 2019 shared task systems using our approach, currently holds the highest reported score in the open phase of the BEA 2019 shared task, improving F0.5 by 3.7 points over the best result reported.Comment: BEA 201
    corecore