48,094 research outputs found

    PADS: A simple yet effective pattern-aware dynamic search method for fast maximal frequent pattern mining

    Full text link
    While frequent pattern mining is fundamental for many data mining tasks, mining maximal frequent patterns efficiently is important in both theory and applications of frequent pattern mining. The fundamental challenge is how to search a large space of item combinations. Most of the existing methods search an enumeration tree of item combinations in a depth-first manner. In this paper, we develop a new technique for more efficient max-pattern mining. Our method is pattern-aware: it uses the patterns already found to schedule its future search so that many search subspaces can be pruned. We present efficient techniques to implement the new approach. As indicated by a systematic empirical study using the benchmark data sets, our new approach outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 clearly. The source code and the executable code (on both Windows and Linux platforms) are publicly available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip. © Springer-Verlag London Limited 2008

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis (Extended)

    Get PDF
    This extended paper presents 1) a novel hierarchy and recursion extension to the process tree model; and 2) the first, recursion aware process model discovery technique that leverages hierarchical information in event logs, typically available for software systems. This technique allows us to analyze the operational processes of software systems under real-life conditions at multiple levels of granularity. The work can be positioned in-between reverse engineering and process mining. An implementation of the proposed approach is available as a ProM plugin. Experimental results based on real-life (software) event logs demonstrate the feasibility and usefulness of the approach and show the huge potential to speed up discovery by exploiting the available hierarchy.Comment: Extended version (14 pages total) of the paper Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis. This Technical Report version includes the guarantee proofs for the proposed discovery algorithm
    corecore