90,757 research outputs found

    Distributed Online Big Data Classification Using Context Information

    Full text link
    Distributed, online data mining systems have emerged as a result of applications requiring analysis of large amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a distributed online data classification framework where data is gathered by distributed data sources and processed by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data streams either by using their locally available classification functions or by helping each other by classifying each other's data. Importantly, since the data is gathered at different locations, sending the data to another learner to process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from a better classification will exceed the costs. We model the problem of joint classification by the distributed and heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is characterized by a specific context. We develop a distributed online learning algorithm for which we can prove sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic regret results characterizing the performance of the proposed algorithm

    Representation Learning with Fine-grained Patterns

    Full text link
    With the development of computational power and techniques for data collection, deep learning demonstrates a superior performance over most of existing algorithms on benchmark data sets. Many efforts have been devoted to studying the mechanism of deep learning. One important observation is that deep learning can learn the discriminative patterns from raw materials directly in a task-dependent manner. Therefore, the representations obtained by deep learning outperform hand-crafted features significantly. However, those patterns are often learned from super-class labels due to a limited availability of fine-grained labels, while fine-grained patterns are desired in many real-world applications such as visual search in online shopping. To mitigate the challenge, we propose an algorithm to learn the fine-grained patterns sufficiently when only super-class labels are available. The effectiveness of our method can be guaranteed with the theoretical analysis. Extensive experiments on real-world data sets demonstrate that the proposed method can significantly improve the performance on target tasks corresponding to fine-grained classes, when only super-class information is available for training

    Cost-sensitive Learning for Utility Optimization in Online Advertising Auctions

    Full text link
    One of the most challenging problems in computational advertising is the prediction of click-through and conversion rates for bidding in online advertising auctions. An unaddressed problem in previous approaches is the existence of highly non-uniform misprediction costs. While for model evaluation these costs have been taken into account through recently proposed business-aware offline metrics -- such as the Utility metric which measures the impact on advertiser profit -- this is not the case when training the models themselves. In this paper, to bridge the gap, we formally analyze the relationship between optimizing the Utility metric and the log loss, which is considered as one of the state-of-the-art approaches in conversion modeling. Our analysis motivates the idea of weighting the log loss with the business value of the predicted outcome. We present and analyze a new cost weighting scheme and show that significant gains in offline and online performance can be achieved.Comment: First version of the paper was presented at NIPS 2015 Workshop on E-Commerce: https://sites.google.com/site/nips15ecommerce/papers Third version of the paper will be presented at AdKDD 2017 Workshop: adkdd17.wixsite.com/adkddtargetad201

    An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy

    Full text link
    Etsy is a global marketplace where people across the world connect to make, buy and sell unique goods. Sellers at Etsy can promote their product listings via advertising campaigns similar to traditional sponsored search ads. Click-Through Rate (CTR) prediction is an integral part of online search advertising systems where it is utilized as an input to auctions which determine the final ranking of promoted listings to a particular user for each query. In this paper, we provide a holistic view of Etsy's promoted listings' CTR prediction system and propose an ensemble learning approach which is based on historical or behavioral signals for older listings as well as content-based features for new listings. We obtain representations from texts and images by utilizing state-of-the-art deep learning techniques and employ multimodal learning to combine these different signals. We compare the system to non-trivial baselines on a large-scale real world dataset from Etsy, demonstrating the effectiveness of the model and strong correlations between offline experiments and online performance. The paper is also the first technical overview to this kind of product in e-commerce context
    • …
    corecore