2 research outputs found

    Linear-Complexity Overhead-Optimized Random Linear Network Codes

    Full text link
    Sparse random linear network coding (SRLNC) is an attractive technique proposed in the literature to reduce the decoding complexity of random linear network coding. Recognizing the fact that the existing SRLNC schemes are not efficient in terms of the required reception overhead, we consider the problem of designing overhead-optimized SRLNC schemes. To this end, we introduce a new design of SRLNC scheme that enjoys very small reception overhead while maintaining the main benefit of SRLNC, i.e., its linear encoding/decoding complexity. We also provide a mathematical framework for the asymptotic analysis and design of this class of codes based on density evolution (DE) equations. To the best of our knowledge, this work introduces the first DE analysis in the context of network coding. Our analysis method then enables us to design network codes with reception overheads in the order of a few percent. We also investigate the finite-length performance of the proposed codes and through numerical examples we show that our proposed codes have significantly lower reception overheads compared to all existing linear-complexity random linear network coding schemes.Comment: Submitted to IEEE Transactions on Information Theor

    Applied Erasure Coding in Networks and Distributed Storage

    Full text link
    The amount of digital data is rapidly growing. There is an increasing use of a wide range of computer systems, from mobile devices to large-scale data centers, and important for reliable operation of all computer systems is mitigating the occurrence and the impact of errors in digital data. The demand for new ultra-fast and highly reliable coding techniques for data at rest and for data in transit is a major research challenge. Reliability is one of the most important design requirements. The simplest way of providing a degree of reliability is by using data replication techniques. However, replication is highly inefficient in terms of capacity utilization. Erasure coding has therefore become a viable alternative to replication since it provides the same level of reliability as replication with significantly less storage overhead. The present thesis investigates efficient constructions of erasure codes for different applications. Methods from both coding and information theory have been applied to network coding, Optical Packet Switching (OPS) networks and distributed storage systems. The following four issues are addressed: - Construction of binary and non-binary erasure codes; - Reduction of the header overhead due to the encoding coefficients in network coding; - Construction and implementation of new erasure codes for large-scale distributed storage systems that provide savings in the storage and network resources compared to state-of-the-art codes; and - Provision of a unified view on Quality of Service (QoS) in OPS networks when erasure codes are used, with the focus on Packet Loss Rate (PLR), survivability and secrecy
    corecore